已知函数f(x)=x的平方+x分之a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:02:29
已知函数f(x)=x的平方+x分之a
已知函数f(x)=根号1-x的平方

1.判断函数的奇偶性.f(-x)=根号(1-(-x)^2)=f(x)定义域1-x^2>=0,-1

已知函数f(x)=1/3x的平方+2x的平方-5

对f(x)=1/3x的平方+2x-5,(应该是这题吧)求导得f'(x)=2/3x+2>0,解得x>-3所以单调增区间为[-3,正无穷大)因为在[-3,正无穷大)单调增,所以最大值为f(3)=1/3*3

已知x不等于0,函数f(x)满足f(x+1/x)=x的平方+1/x的平方.求f(x)的表达式

f(x+1/x)=x^2+1/x=(x+1/x)^2-2即令y=x+1/x得f(y)=y^2-2综上f(x)=x^2-2

已知x不等于0时,函数f(x)满足f(x-1/x)=x的平方+1/x的平方(分号下x的平方).

已知x≠0时,函数f(x)满足f(x-1/x)=x²+1/x²,则f(x)的表达式是?f(x-1/x)=x²+1/x²=(x²+1/x²-2

已知函数f(x)=x立方+6x平方

1,已知函数f(x)=x立方+6x平方,当X=0时,Y=0所以函数f(x)的图像经过原点,f(x)导=3x^2+6xf(0)导=02,已知函数f(x)=x立方+6x平方的导数为:f(x)导=3x^2+

已知函数f(x+1)=x的平方+2x,求f(x)

法一f(x+1)=x²+2x=x²+2x+1-1=(x+1)²-1所以f(x)=x²-1法二:令x+1=t,则x=t-1那么f(t)=(t-1)²+2

已知g(x)=-x的平方-3,f(x)是二次函数.当x...

首先令g(x)中x取0,得g(0)=-3.由于g(x)+f(x)为奇函数,所以必有g(0)+f(0)=0;所以:f(x)=0设f(x)=aX平方+bX+c-----------由f(x)为二次函数得出

已知函数f(2x-1)=x的平方 8,求函数f(x)=?

f(2x-1)=x^2+8,2x-1=u,x=(u+1)/2f(x)=(x+1)^2/4+8

已知函数f(x+1)=3x的平方+x,求f(x)

令a=x+1则x=a-1所以f(a)=3(a-1)²+a=3a²-6a+3+a=3a²-5a+3所以f(x)=3x²-5x+3

已知二次函数f(x)=ax的平方+x有最小值.不等式f(x)

因为f(x)是二次函数且有最小值所以图象开口向上即a>0(1)f(x)

已知函数f(x)={x的平方-2x+3a,x大于等于2

x3即2^2-2*2+3a>3得a>1,2^2为2的平方f(x)=x^2-2x+3a=(x-1)^2+3a-1在x>=2时是增函数所以a>1

已知函数f(x)=lg(4-x平方),则f(x)的定义域是?

4-x平方>0时,f(x)有意义则x²再问:还有它的奇偶性再答:偶函数因为f(x)=f(-x)

已知函数f(x)=x平方+a除以x判断函数的奇偶性

f(x)=x平方+a除以x假设x>0所以f(-x)=((-x)²+a)/(-x)=-(x²+a)/x=-f(x)所以是奇函数.如果是在[2,正无穷)区间是增函数则f(x)=(x&s

已知函数f(x)=cos平方x-2cosxsinx-sin平方x,求f(x)的最大值和最小值

由题意可得:f(x)=(cosx)^2-(sinx)^2-2sinxcosx=cos2x-sin2x=√2cos(2x+π/4)所以f(x)的最大值为√2,最小值为-√2

已知函数f(2x+3)=x平方,求f(x)的解析式

令t=2x+3则x=(t-3)/2所以f(t)=(t-3)²/4即f(x)=(x-3)²/4

已知函数f(x)=lg(x的平方-1)

先看该函数的定义域,为x>1或x<-1,关于y轴对称,讨论f(x)和f(-x)的关系,得到该函数为偶函数,、lgx²-1<1,则lgx²-1<lg10,因为底数为10,所以x&su

已知函数f(x)=2cosx+sin平方x,求f(x)的最大值

f(x)=2cosx+sin^2x=-cos^2x+2cosx+1令t=cosx则f(x)=-t^2+2t+1=-(t-1)^2+2因为t∈[-1,1]所以当t=1时,f(x)有最大值2

已知函数 f(x)=2x的平方 求f(-x) f(1+x)

f(-x)=2(-x)^2=2x^2f(1+x)=2(1+x)^2=2x^2+4x+2即-10≤3x-4≤5则-2≤x≤3即定义域【-2,3】

已知函数f(x+1)=x的平方+4x+1,求f(x)

设u=x+1所以x=u-1.①带入原方程f(u-1+1)=(u-1)^2+4(u-1)+1f(u)=(u-1)^2+4u-3再令u=x,换回得到f(x)=(x-1)^2+4x-3=x^2+2x-2