已知函数f(x)=x平方 2ax 1在区间[-1,2]上的最大值为4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:18:31
先对原函数求导,为6x平方+2ax+b是一个二次函数,由题得,此函数的对称轴为x=-1/2.根据二次函数性质得-a/6=-1/2所以a=3,x=1时,二次函数的值是0所以b=-12原函数为2x立方+3
很标准的导数大题第一问定义域x>0f'(x)=1/x+2ax+b∵曲线y=f(x)在点(1,f(1))处的切线为y=2x-1∴f'(1)=k=2f(1)=2*1-1=1带入方程解得a=0b=1亲,希望
有f(1)=0得a+b+c=0即b=-a-c.①ax^2+bx+c=0的两个根为1和y,有韦达定理得1+y=-b/a,y=c/a.②ax^2+bx+c+a=0有解,得b^2-4a(a+c)≥0.③①代
(1)a=1时,f(x)=(x-3/2)^2-1/4;这是开口向上的抛物线,对称轴x=3/2在[0,2]内,所以最小值为-1/4;最大值是在端点处取得,即max{f(0),f(2)}=2;所以值域为[
已知函数f(x)=x3次方+ax平方+x+2,若a=-1f(x)=x^3-x^2+x+2g(x)=2x-f(x)=-x^3+x^2+x-2g'(x)=-3x^2+2X+1=0x=-1/3,x=1[-1
值域为R,即ax²-ax+1可取区间(0,+∞)上的任意值.若a=0,则ax²-ax+1变为1,f(x)=lg1=0,不满足题意,因此a≠0对于函数f(x)=ax²-ax
f(x)=x^2+2ax+21)a=-1f(x)=x^2-2x+2=(x-1)^2+1>=1x=1时,取得最小值有对称性知道:f(-5)>f(5)x=1两侧,函数单调!因此函数最值在端点取得!因此:f
1.f(x)=x^2+ax+3的定点(最小值点为)x=-a/2,最小值为f(x)=-(a^2/4)+3,将x属于[-2,2],f(x)≥a带入求解,-(a^2/4)+3>=a结果:-60,-a0时,f
这里面无法输入公式,我在word里输入好的,截个图插进来了啊!其实这题目得会啊!
因为f(x)是二次函数且有最小值所以图象开口向上即a>0(1)f(x)
(1)f(x)=x²-2x+2=(x-1)²+1对称轴x=1最小值f(1)=1最大值f(-5)=37(2)因为f(x)是偶函数所以f(-x)=f(x)x^2-2ax+2=x^2+2
已知函数f(x)=(x^2+c)/(ax+b)为奇函数,f(1)
f(x2)-f(x1)=a(x2^2-x1^2)+2a(x2-x1)=a(x2+x1)(x2-x1)+2a(x2-x1)=a(1-a)(x2-x1)+2a(x2-x1)=a(3-a)(x2-x1)因为
f(x)=lnx-(1/2)ax^2-2x,(x>0)求导f'(x)=1/x-ax-2=(-ax^2-2x+1)/x,若函数f(x)在定义域内单调递增,则有f'(x)>=0,且f'(x)不恒为0得-a
(1)ax平方+2x+1=y的图像必须与x轴无交点,且a大于零,且4-4a小于0,据此求得a大于1(2)同理,必须与x轴有交点,求得a大于0小于1
由题设[f(x1)-f(x2)]/(x1-x2)<0.易知,在R上,函数f(x)递减,一方面,当x<0时,f(x)=a^x递减,∴0<a<1,另一方面,当x≥0时,函数f(x)=(a-3)x+4a也递
(1)当a等于1时函数为f(x)=x的平方-|x|+1因为开口向上所以x大于零和x小于零的图像对称轴分别为正1/2和负1/2作出函数图象观察可得x在负无穷到负1/2和0到1/2上递减在负1/2到0和1
①a=-2时,f(x)=(2x平方-2x-2)×e的x方,由于e的x方是递增的,所以2x平方-2x-2的单调区间即是f(x)的单调区间,即x>1\2时是递增的,x0时,其递减区间是x>-b\2a=-1