已知函数F(X)=X3 AX在R上有三个零点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 16:40:27
g(x)=f(x)f(-x)g(-x)=f(-x)f[-(-x)]=f(-x)f(x)=g(x)所以f(x)f(-x)是偶函数h(x)=f(x)|f(-x)|h(-x)=f(-x)|f(x)||f(x
因为f(x)=f(2-x)得f(5/2)=f(2-5/2)=f(-1/2)因为函数f(x)是奇函数所以f(-1/2)=-f(1/2)1/2属于0
因为f(x)=-f(x+2)成立,故f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),即f(x)=f(x+4),可知函数周期T=4当0小于等于x小于等于1时,f(x)非负,当且仅当x=1时
因为f(1-x)+f(1+x)=4,且f(x)在x>1时是增函数,所以易知f(x)在R上是增函数所以f(cos2x-2)=f(1-3+cos2x)=4-f(1+3-cos2x)=4-f(4-cos2x
f(x)=-f(-x)f(4^x-4)>-f[2^(x+1)-4^x]=f[4^x-2^(x+1)]单调递减4^x-4<4^x-2^(x+1)2^2>2^(x+1)2>x+1x<1
f(-x)+f(x)=0f(x)=-f(-x)f(x)为奇函数,关于原点对称当x属于(-1,0)时,f(x)=-3^x/(9^x+1)当x属于(0,1)时,f(x)=3^x/(9^x+1)因为f(0)
(1)令x=y=1,则f(1)=f(1)-f(1)=0令x=1,则且f(1/y)=f(1)-f(y)=-f(y)=>f(1/y)=-f(y)则f(xy)=f(x/(1/y))=f(x)-f(1/y)=
答案选B重点要利用f(x)在[0,1]上递增的性质知f(1/2)=1-f(1/2)所以f(1/2)=1/2又f(1/4)=f(1)/2=1/2所以f(3/4)=1-f(1/4)=1/2所以任取[1/4
令x-4=t,则x=t+4,代入得f(t)=-f(t+4)即f(x)=-f(x+4)(字母无所谓的)上式代入已知条件得f(x-4)=f(x+4),用上面方法可得f(x)=f(x+8),那么f(-25)
f(x+1)=1/f(x)f[x+1)+1]=1/f(x+1)=1/1/f(x)=f(x)即f(x+2)=f(x)函数的周期为23=log28
f(x)的定义域显然为x∈R设x1,x2∈R,且x1>x2则f(x1)-f(x2)=(2^x1-1)/(2^x1+1)-(2^x2-1)/(2^x2+1)={[(2^x1-1)*(2^x2+1)]-[
复合函数的导数F'(x)=f'(3x-1)*(3x-1)'所以F'(x)=3f'(3x-1)令x=1F'(1)=3f'(2)=9
喜欢这个ID号,答一下.根据题意,g(x),f(x)关于x=1对称,则有:g(1+x)=f(1-x)令x=x-1,则有g(x)=f(2-x)=(2-x)e^(-(2-x))=(2-x)e^(x-2):
f'(x)=1-cosx>=0因此f(x)在R上为增函数.再问:高一应该怎么做?不用导数再答:高一呀,那估计只能用定义法了,但这种题用定义法实在不容易化简哪。
令g(x)=f(x)-x,则g'(x)=f'(x)-1
f(-3)=-f(3)=0f(-3+5)=f(2)=f(-3)=0f(2+5)=f(7)=0f(3+5)=f(8)=0所以f(3),f(2),f(5),f(7)均为零,有4个解
1.令x=y=1f(1)=f(1)+f(1)f(1)=0令x=y=-1f(1)=f(-1)+f(-1)f(-1)=02.令y=-1f(-x)=f(-x)+f(x)f(-1)=0f(-x)=f(x)偶函
f[x]=(1+cos2x)/2+1/2·sin2x=1/2+1/2(cos2x+sin2x)=1/2+√2/2·sin(2x+π/4)(1)f(3π/8)=1/2+√2/2·sin(3π/4+π/4
任取x1,x2∈R,且x1<x2,则由于f(x)在R上是增函数,g(x)在R上是减函数,有f(x1)<f(x2),g(x1)>g(x2),∴F(x1)-F(x2)=[f(x1)-g(x1)]-[f(x
令x=y=1,代入f(xy)=f(x)+f(y),有f(1)=f(1)+f(1)得到f(1)=0;f(2a-3)1得到a>2