已知函数f(x)=x-a x a 2在(1, ∞)内是增函数,求实数a的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:32:09
当x0且a≤2/3则:0
f(x)=(2x+3)/(3x),则an+1=f(1/an),得a(n+1)=a(n)+2/3,又a1=1,所以a(n)=1+(n-1)2/3;a(2n)a(2n-1)=[1+(2n-1)2/3][1
当x≥0时f(x)=x2+4x,可知f(x)在[0,+∞)上递增,当x<0时f(x)=4x-x2,可判断f(x)在(-∞,0)上递增,从而函数f(x)在R上单调递增由f(2-a2)>f(a),得2-a
(1)令t=2x,则t>0,所以原函数转化为y=t-t2=-(t-12)2+14在(0,12)上为增函数,在(12,+∞)上是减函数,∴y≤14,f(x)的值域(-∞,14].(2)因为f(x)>16
(1)f(x)=x+1x为定义域内的奇函数.证明如下:∵函数f(x)=x+1x的定义域为{x|x≠0},关于原点对称,又f(-x)=-x+1−x=-(x+1x)=-f(x),∴f(x)=x+1x为定义
-3或者1再问:求详解·,谢谢再答:这是分段函数啊。。当X>=0时,FX=2X+1。。然后你把2X0+1=3带入,求出X0=1当X
这个题目本身是有问题的,用什么方法都不能求F'(1),因为它根本就不存在.或许你条件没给全,如果定义F(1)=lim(1-1/x)^(2x) (x-->1+),则 F
已知函数f(x)=(x2+2x+a)/x(1)若a=1/2,当x∈[1,+∞)时,求函数的最小值(2)当x∈[1,+∞)时,f(x)>0恒成立,求实数a的取值范围(3)当x∈[1,+∞)时,f(x)>
再问:�������Ƶ�ͦ���������ڱ�ĵ�һ���Ѿ������д��再答:ѧ��ͺ���Ŷ��
设f'(x)=2kx+bf(x)=kx^2+bx+c则x^2f'(x)-(2x-1)f(x)=2kx^3+bx^2-[2kx^3+(2b-k)x^2+(2c-b)x-c]=(k-b)x^2+(b-2c
分段函数分段讨论当X
解题思路:函数性质解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.ph
g(x)=f(x)/x=x+2+a/x=x+a/x+2≤-2*2+2=-2,当x=-2时等号成立,最大值-2.当a>0时,g(x)>0在[1,+∞),恒成立(证略)当a=0时,g(x)=x+2在[1,
f(x)对x求导得df(x)/dx=lnx+1df(x)/dx>0有x>e分之1,原函数在这个区间单增df(x)/dx
(1)由条件f(-x)+f(x)=x^2+x+x^2-x=2x^2≤2|x|→x^2-|x|≤0→|x|^2-|x|≤0→|x|(|x|-1)≤0→0=0,两根之积为-5,显然,该方程有两根,且两根异
由题设[f(x1)-f(x2)]/(x1-x2)<0.易知,在R上,函数f(x)递减,一方面,当x<0时,f(x)=a^x递减,∴0<a<1,另一方面,当x≥0时,函数f(x)=(a-3)x+4a也递
x=5时,f(x)=f(x-2)从而任何x>=5的值都是化成xf(8)=f(8-2)=f(6)=f(6-2)=f(4)=4-4^2=-12再问:�Ҳ����װ�f8Ϊʲô����f8-2再答:����
因为F(x)在(1,10)上为连续函数设G(x)=F(x)—3,故G(x)在(1,10)上也为连续函数G(1)=-2,G(10)=8,G(1)0,故在(1,10)中存在m令G(m)=0G(m)=0,即