已知函数f(x)=x*e的-x次方 (1)求函数f(x)的单调区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:43:04
1,a=15,函数一阶导f'(x)=(-x^2+2x-15)/e^x=(-(x-1)^2-14)/e^x
(1)(0,-1/a)(2)a>=-0.5(3)-3和1
已知函数f(x)=e^[(kx-1)/(x+1)](e是自然对数的底数),若对任意的x∈(0,+无穷),都有f(x)
令x=y=0;得f(0)=0;令y=det(微小量)f(x+det)=f(x)*(e^det)+f(det)*e^x;f(x+det)-f(x)=f(x)*(e^det-1)+f(det)*e^x对等
f(x)=x-1+a/e^x易知①当a>0时f'(x)=1+a(e^(-x))'=1-a(e^(-x))令f‘(x)=0则1-a(e^(-x))=0x=lna所以f(x)有极小值f(lna)=lna②
求f(x)的导数导数为0处即是最小值点
f'(x)=(2x+2+a)*e^x令f'(x)=0x=-(2+a)/2(1)-(2+a)/2>=1即a
求导,得f'(x)=2x+1/x,在所给的区间内恒大于0,所以函数单调递增,所以最大值是f(e),最小值是f(1)
∵f(x)在(0,+∞)是增函数∴当x∈(0,+∞)时,f(x)'=e^x+a>0∴a>-e^x而-e^x所以a>=-1
f(x)=lnx+k/e^x=lnx+ke^(-x)f'(x)=1/x-ke^(-x)=1/x-k/e^x
为什么我会想直接求二阶导数.然后证明为凸函数就行了.囧.第二个化为m(lnx+x)=x^2/2有且有一个跟令H(x)=x^2/2-m(lnx+x)让H(x)的零点为1个就行了.不过我还是挺纠结.凸函数
思路:求导数,根据导数的正负判断单调性f(x)=(x+1)/e^xf‘(x)={(x+1)'*e^2-(1+x)-(e^x)'}/[e^x]^2=-x/(e^x)所以当x0函数单调增加所以当x>0时,
/>方程x2-ax+a=0在(0,+∞)内存在两个不等实根,则(1)判别式大于0,(2)两根之和大于0,即a>0,(3)两根之积大于0,即a>0(利用韦达定理)再问:貌似懂了,但还是有点迷迷糊糊的再答
f(x)=(e^x-a)^2+(e^(-x)-a)^2=e^(2x)-2ae^x+a^2+e^(-2x)-2ae^(-x)+a^2=(e^x+e^(-x))^2-2a(e^x+e^(-x))+2a^2
令F’(x)=(x^2-2)e^x=0==>x=±√2F”(x)=(2x+x^2-2)e^x,F”(-√2)=(-2√2)e^(-√2)0∴f(x)在x=-√2处取极大值,在x=√2处取极小值x∈(-
1.f'(x)=e^x-1/(x+1),f'(0)=0,f''(x)=e^x+1/(x+1)^2>0,f'(x)为(-1,+∞)上的增函数,所以x>0时,f'(x)>f'(0)=0,f(x)在(0,+
首先判断奇偶要看定义域是否关于原点对称,只有在对称情况下才能接下来判断定义域e^x-e^(-x)>0e^x>e^(-x)x>-x2x>0x>0定义域都不关于原点对称,∴是非奇非偶函数这是个复合函数外面
此题模仿今年新课标理数21题压轴题,有兴趣可以去对比下(1)f'(x)=1/x-e^(x+a)f'(1)=1-e^(1+a)=01+a=0a=-1∴f(x)=lnx-e^(x-1)f&
f(x)=e^x,x01/e>0f(1/e)=ln(1/e)=-1f(f(1/e))=f(-1)=1/e
再问:第二问呢......再答:手打啊,慢,正在打,稍等,呵呵