已知函数f(x)=e^x ae^-x为偶数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:44:23
(一)函数f(x)=e^x+2x²-3x.求导得f'(x)=e^x+4x-3.∴f(1)=e-1,f'(1)=e+1.∵曲线f(x)在点(1,f(1))处的切线方程为y-f(1)=f'(1)
∵f(x)=-xlnx+ax,∴f'(x)=-lnx+a-1∵函数f(x)=-xlnx+ax在(0,e)上是增函数∴f'(x)=-lnx+a-1≥0在(0,e)恒成立∵y=-lnx是(0,e)上的减函
1,a=15,函数一阶导f'(x)=(-x^2+2x-15)/e^x=(-(x-1)^2-14)/e^x
(1)(0,-1/a)(2)a>=-0.5(3)-3和1
已知函数f(x)=e^x+ax²+bx.设函数f(x)在点(t,f(t))(0
已知函数f(x)=e^[(kx-1)/(x+1)](e是自然对数的底数),若对任意的x∈(0,+无穷),都有f(x)
令x=y=0;得f(0)=0;令y=det(微小量)f(x+det)=f(x)*(e^det)+f(det)*e^x;f(x+det)-f(x)=f(x)*(e^det-1)+f(det)*e^x对等
求f(x)的导数导数为0处即是最小值点
∵f(x)在(0,+∞)是增函数∴当x∈(0,+∞)时,f(x)'=e^x+a>0∴a>-e^x而-e^x所以a>=-1
f(x)=lnx+k/e^x=lnx+ke^(-x)f'(x)=1/x-ke^(-x)=1/x-k/e^x
∵f(x)=e^x*(cosx-sinx)∴f'(x)=(e^x)'(cosx-sinx)+e^x(cosx-sinx)'=e^x(cosx-sinx)+e^x(-sinx-cosx)=e^xcosx
楼上的回答还有一些地方需要纠正一下,我借用一下一些结论即求x>1时,总有(e^x-a)/x>alnx+a成立即总有e^x-a>ax(lnx+1)成立即总有e^x>a[xlnx+x+1]成立∵x>1时,
思路:求导数,根据导数的正负判断单调性f(x)=(x+1)/e^xf‘(x)={(x+1)'*e^2-(1+x)-(e^x)'}/[e^x]^2=-x/(e^x)所以当x0函数单调增加所以当x>0时,
1.f'(x)=e^x-1/(x+1),f'(0)=0,f''(x)=e^x+1/(x+1)^2>0,f'(x)为(-1,+∞)上的增函数,所以x>0时,f'(x)>f'(0)=0,f(x)在(0,+
首先判断奇偶要看定义域是否关于原点对称,只有在对称情况下才能接下来判断定义域e^x-e^(-x)>0e^x>e^(-x)x>-x2x>0x>0定义域都不关于原点对称,∴是非奇非偶函数这是个复合函数外面
1.令h(x)=f-g=e^x-xe^2h'(x)=e^x-e^2当x>2时,h'(x)>0,单调增当x
此题模仿今年新课标理数21题压轴题,有兴趣可以去对比下(1)f'(x)=1/x-e^(x+a)f'(1)=1-e^(1+a)=01+a=0a=-1∴f(x)=lnx-e^(x-1)f&
f(x)=e^x,x01/e>0f(1/e)=ln(1/e)=-1f(f(1/e))=f(-1)=1/e
k不等于零,所以x不等于零.