已知函数f(x)=a*2^x-2 a 2^x 1(a∈R)试判断单调性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:00:30
因为绝对值f(x)
已知函数f(x)=(x2+2x+a)/x(1)若a=1/2,当x∈[1,+∞)时,求函数的最小值(2)当x∈[1,+∞)时,f(x)>0恒成立,求实数a的取值范围(3)当x∈[1,+∞)时,f(x)>
f(x)=(x+1/2)+(a-1/4)>=a-1/4,由于f(m)
f(x)=x平方+x+a=x(x+1)+a∵f(m)<0∴f(m)=m(m+1)+a<0即m(m+1)<-a又∵a>0,且m<m+1∴m<0,m+1>0∵(m+1)平方≥0∴f(m+1)=(m+1)平
1)因为lg函数是单调递增的,而且(x^2+2x+a)/x在x=1/2时取得最小值即f(x)=2+√22)有意义就是(x^2+2x+a)/x>0当a>=o时成立.当a-2.因为x>=1.所以a>-3所
解题思路:本题主要考查二次函数的性质,可以对对称轴进行讨论,由于题干有一部分看到不是太懂,如果与问的问题有出入,请追加讨论,后面的函数,如果拍图片就好了,解题过程:
f(x)>=g(x)即(lnx+2x)/(x^2+x)≥a令h(x)=(lnx+2x)/(x^2+x)h'(x)=(lnx-x+1)(2x+1)/(x^2+x)^2令h'(x)=0x=1列表略易知h(
k(x)=2x^2-x+a-lnx求导在[1,3]内有一个零点q,k(q)0,k(3)>0
提示:利用x+1/x,然后将x2+2配成(x-a/2)形式直接告诉答案多不好有提示加你的聪明头脑得到的答案最好:)
g(x)=f(x)/x=x+2+a/x=x+a/x+2≤-2*2+2=-2,当x=-2时等号成立,最大值-2.当a>0时,g(x)>0在[1,+∞),恒成立(证略)当a=0时,g(x)=x+2在[1,
(1)对f(x)、g(x)分别求导得:f(x)'=1+2/x²;g(x)'=-a/x;根据斜率相等带入x=1得1+2=-a即a=-3;所以g(x)=-3*(2-lnx)=3lnx-6x=1时
先把等式化成顶点式,f(x)=(x+1/2)^2-1/4+a,当x=-1/2时取到最小值,我们将x=-1/2加1,因为最低点要是加1之后大于0,那么其它点也会成立,f(1)=1+1+a>0(a>0),
f(m+1)>0将m带入f(x)=x^2-x+af(m)=m^2-m+a<0又∵a>0∴m^2-m<0→m^2<m若m>0,得出0<m<1若m<0,得出m>1(不符,舍去)→0<m<1将m+1带入方程
函数y=x+a/x≥2√a,a∈(0,+∞),并且此函数有一个重要性质:在(0,√a]上单调递减,在[√a,+∞)上单调递增.(这个性质的证明比较简单,你自己证)因此,若04,最小值t(a)=f(√a
这个,是两个函数吧(1)f(x)=(2-a)x+1,x
(1)当a=-3时,f(x)≥3即|x-3|+|x-2|≥3,即①x≤23−x+2−x≥3,或②2<x<33−x+x−2≥3,或③x≥3x−3+x−2≥3.解①可得x≤1,解②可得x∈∅,解③可得x≥
第一问可以把f(x)看作是一个二次函数-cos^2x+cosx+aa=-1,b=1,c=a只需b^2-4ac≥0即1+4a≥0解得a的取值范围为(-1/4,+∞)第二问我还在想.再问: 谢谢,,,呃
因f(-x)=-f(x)所以:a-(2\-2x+1)=-a+(2\2x+1)a=-2/(4x²-1)奇怪,a的值无法确定?!仔细推敲一下原题,发现原题是错的!已知函数是y=-1/x的平移变形
由原方程可化为f(x)=((x+1)的平方)+a-1所以方程的对称轴为x=-1,即x=-1时f(x)最小x=-1向两边递增(1)因为x∈[1,正无穷),所以当x=1时,f(x)为最小值3.5(2)因为