已知函数f(x)=(a-5)x 8, 求实数a的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:11:21
已知函数f(x)=(a-5)x 8, 求实数a的取值范围
已知函数f(x)=-x+3-3a(x

当x0且a≤2/3则:0

已知函数f(x)=lg(1+2^x+3^x+4^x+a*5^x)对于一切x=

1+2^x+3^x+4^x+a*5^x>01+2^x+3^x+4^x>-a*5^x2^x,3^x,4^x都是增函数所以x

已知函数fx)=lnx+a/x,若f(x)

设g(x)=x^2-f(x)求g'(x)=2x-1/x+a/x^2通分有g'(x)=(2x^3-x+a)/x^2考虑其在(0,+∞)上单调性若2x^3-x+a>=0则g(x)最小值满足g(x)>0即可

已知函数f(x)=(x2+2x+a)/x

已知函数f(x)=(x2+2x+a)/x(1)若a=1/2,当x∈[1,+∞)时,求函数的最小值(2)当x∈[1,+∞)时,f(x)>0恒成立,求实数a的取值范围(3)当x∈[1,+∞)时,f(x)>

已知函数f(x)=sinx+5x,x∈(-1,1),如果f(1-a)+f(1-a^2)

f(x)=sinx+5x,x∈(-1,1)∵f(-x)=sin(-x)-5x=-(sinx+5x)∴f(x)是奇函数f'(x)=cosx+5∴f'(x)恒>0∴f(x)是增函数f(1-a)+f(1-a

已知函数f(x)=x2+a/x.

(1)f(1)=1+a/1=2,∴a=1,f(x)=x²+1/x,f(f(a))=f(f(1))=f(2)=4+1/2=4.5(2)当a=0,f(x)=x²是偶函数,当a≠0,f(

已知函数f(x)=bx+12x+a

∵f(x)=bx+12x+a,∴f(1x)=b1x+121x+a=b+x2+ax,则f(x)f(1x)=bx+12x+a•b+x2+ax则f(x)f(1x)-k=(bx+1)(b+x)−k(2x+a)

已知函数f(x)=-a/x+lnx

1、f'(x)=a/(x^2)+1/x=(x+a)/x^2当a>=0时,x在(0,正无穷)上递增,当a=0,a

已知函数f(x)=x的三次方+a

g(x)=x^3+ax²+3bx+c-2为奇函数,则二次项和常数项都是0,解得a=0,c=2.此时f(x)=x^3+3bx,f'(x)=3x²+3b=3(x²+b).1、

已知函数f(x)=x|lnx-a|

(1)因为a=3所以f(x)=x|lnx-3|,x>0当x∈(0,e³)时,f(x)=3x-xlnxf′(x)=3-lnx-1=2-lnx令f′(x)

函数定义域(简单的)已知函数f(x)=3x²-5x+2,求f(-根号2),f(-a),f(a+3),f(a)+

f(x)=3x²-5x+2f(-根号2)=3(-根号2)^2-5*(-根号2)+2=3*2+5根号2+2=7+5*根号2f(-a)=3a^2+5a+2f(a+3)=3(a+3)^2+5(a+

已知函数f(x)=lnx+ax+(a+1)/x

解题思路:)当a>-1/2时,讨论函数单调性2)当a=1时,若关于x的不等式f(x)≥m^2-5m-3恒成立,求m的取值范解题过程:

已知函数f(x)=lnx+a/x,当a

1、定义域为:(0,+00)当a

已知函数f(x)=4x/x+a

4x/(x+a)>=14x/(x+a)-1>=0(3x-a)/(x+a)>=0(3x-a)(x+a)>=0(x-a/3)(x+a)>=0分类讨论,若1.a>0,则x>a/3或x

已知函数f(x)=x^2+2x+a,g(x)=f(x)/x.

g(x)=f(x)/x=x+2+a/x=x+a/x+2≤-2*2+2=-2,当x=-2时等号成立,最大值-2.当a>0时,g(x)>0在[1,+∞),恒成立(证略)当a=0时,g(x)=x+2在[1,

【一】已知函数f(x)是R上的增函数,设F(x)=f(X) - f(a-x)

1、设x1>x2,则a-x1f(x2),f(a-x2)>f(a-x1).F1-F2=f(x1)-f(x2)+f(a-x2)-f(a-x1)>0,由定义可证得.2、中A是指什么?【二】值域为[-5,-1

已知函数f(x)=lg(x+a/x-2)

函数y=x+a/x≥2√a,a∈(0,+∞),并且此函数有一个重要性质:在(0,√a]上单调递减,在[√a,+∞)上单调递增.(这个性质的证明比较简单,你自己证)因此,若04,最小值t(a)=f(√a

已知函数f(x)=(2-a)x+1,x

这个,是两个函数吧(1)f(x)=(2-a)x+1,x

已知函数f(x)=|x+a|+|x-2|

(1)当a=-3时,f(x)≥3即|x-3|+|x-2|≥3,即①x≤23−x+2−x≥3,或②2<x<33−x+x−2≥3,或③x≥3x−3+x−2≥3.解①可得x≤1,解②可得x∈∅,解③可得x≥

已知函数f(x)=|x-a|-lnx(a>0)

【1解】:f(x)=|x-1|-ln[x],x>0当00,为递增函数,f(x)>f(1);所以,f(x)的最小值为f(1)=0;【2解】:当a>1,由(1)可得:(0,a]递减;[a,无穷)递增;当0