已知函数f x=1 3x的三次方-1 2x的²
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:34:53
额先求导把x=-1与x=2代入求导后的式子得a,b值然后再求单调区间f’(x)=3x^2+2ax+b因为f’(-1)=f’(2)=0所以a=-1.5,b=-6令f’(x)>0,得x2所以增区间:(负无
f(x)=x^3-6x^2+9x-3f'(x)=3x^2-12x+9=3(x^2-4x+3)=3(x-1)(x-3)令f'(x)=0得x1=1,x2=3随x变化,f'(x),f(x)变化如下:x(-∞
f'(x)=3x^2-8x=x(3x-8)=0--->x=0,8/3f(8/3)=512/27-256/9=-256/27为极小值f(0)=0为极大值f(4)=64-64=0因此最大值为0,最小值为-
求导做.fx导数=3x^2-8x当导数=0,x=0或8/3当0《x《8/3,导数《0,单调递减;同理得递增区间所以在区间0:4,可做出图像,算x=0,8/3,4这三值,进行比较得出答案
f'(x)=3x^2-8x=x(3x-8)=0--->x=0,8/3f(8/3)=512/27-256/9=-256/27为极小值f(0)=0为极大值f(4)=64-64=0因此最大值为0,最小值为-
不懂可以追加.
解题如下:f'=3x²+2ax-1把x=2/3代入得a=4/3+4a/3-1,解得a=-1f=x^3-x²-x+cf'=3x²-2x-1令f'=0,解得x=-1/3或者x
1求导,f'(x)=6x^2-12x=6x(x-2),所以在[-2,0)上,f'(x)>0,函数f(x)单调递增;在[0,2]上,f'(x)f(-2),最小值为f(-2)=a-40=-37,从而a=3
求导得,f'(x)=6x²-12x令f'(x)=0,解得x=0或者x=2可以判断在(-2,0)上f单调递增,在(0,2)上单调递减所以最大值在x=0上取到,f(0)=a=3最小值在-2或者2
①a=3fx=1/3x立方-3lnx-1/3f'x=x平方-3/x斜率=1-3=-2f(1)=1/3-0-1/3=0所以切线方程为y-0=-2(x-1)即y=-2x+2②f'(x)=x
g(x)=x³-3x²-9x+3-mg'(x)=3x²-6x-9=3(x-3)(x+1),得极值点x=3,-1g(3)=-24-m为极小值;g(-1)=8-m为极大值端点
f(x)的导数为:h(x)=3ax^2+2bx-3,h(1)=3a+2b-3=0……(*)又由切线方程为y+2=0,知:y(1)=a+b-3=-2……(**)联立(*)与(**)两式解得:a=1,b=
x0则有f(-x)=(-x)^2+三次根号下(-x)又f(x)为奇函数,所以f(-x)=-f(x)所以-f(x)=f(-x)=(-x)^2+三次根号下(-x)即f(x)=-x^2-三次根号下x所以有f
(1)f(x)=x^3-mx^2,f'(x)=3x^2-2mx,f'(1)=3-2m=1/3,m=4/3.f(x)=x^3-4x^2/3(2)f'(x)=3x^2-8x/3=x(9x-8)/3当x≤0
g(x)=x^3+ax²+3bx+c-2为奇函数,则二次项和常数项都是0,解得a=0,c=2.此时f(x)=x^3+3bx,f'(x)=3x²+3b=3(x²+b).1、
f(x)=x^3+2x^2+x>=ax^2=>x^3+(2-a)x^2+x>=0对于R+恒成立因为x>0,所以只要g(x)=x^2+(2-a)x+1>=0对于R+恒成立抛物线g(x)当x>0的时候g(
函数y=1/x^3的定义域为(-∞,0)∪(0,+∞),图像类似于反比例函数y=1/x①当x∈(-∞,0)时,函数y=1/x^3单调递减故:对于不等式1/(a+1)^3
(1)当t=1时,f(x)=4x^3+3x^2-6xf'(x)=12x^2+6x-6f'(0)=-6,即曲线在(0,f(0))处切线的斜率k=-6f(0)=0,即切线过(0,0)点.故切线方程为y=-
∵f(x)=x^3-x而f(-x)=-x^3+x=-(x^3-x)=-f(x)即f(-x)=-f(x)∴f(x)=x^3-x是奇函数