已知函数(x)=3根号3cosx平方 根号3sinx平方-2sinxcosx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:14:11
1,f(x)=sin²x+√3sinxcosx+2cos²x=1-cos²x+√3/2sin2x+2cos²x=cos²x+√3/2sin2x+1=(
已知:函数f(x)=2sinxcosx+2√3cos²x-√3求:(1)单调增区间和最小正周期;(2)当x∈[-π/4,π/4]时求最值.f(x)=2sinxcosx+2√3cos²
f(x)=2sinxcosx+2√3cos²x-√3=2sinxcosx+√3(2cos²x-1)=sin2x+√3cos2x=2sin(2x+π/3)最小正周期T=2π/2=π,
1f(x)=√3sinπx+cosπx=2((√3/2)sinπx+(1/2)cosπx)=2sin(πx+π/3)∴最小正周期T=2π/w=2π/π=2值域f(x)∈[-2,2]2-π/2+2kπ<
f(x)=cos^2x-sin^2x+2(根号3)sinxcosx+1=cos2x+(根号3)sin2x+1=2{(1/2)cos2x+[(根号3)/2]sin2x}+1=2sin(2x+派/6)+1
f(x)=1+cos2x+根号3sin2x+a=2sin(2x+π/6)+a+11、若f(x)max=2,则sin(2x+π/6)=1,即2+a+1=2,得a=-12、正弦的单调减区间在第二和第三象限
f(x)=√3(sin^2x-cos^2x)-2sinxcosx=-√3cos2x-sin2x=-2sin(2x+π/3)1.求最小正周期T=π2.设x∈[-π/3,π/3],求函数的值域和单调区间-
1.f(x)=sinx/3cosx/3+根号3cos^2x/3=1/2sin2x/3+根号3/2(cos2x/3+1)=sin(2x/3+pi/3)+根号3/2对称中心的横坐标满足sin(2x/3+p
f(x)=sin²x+2√3sinxcosx-cos²x=2√3sinxcosx-(cos²x-sin²x)=√3sin(2x)-cos(2x)=2sin(2x
y=sinx^2+根3sinxcosx+2cosx^2=-1/2(1-2sinx^2)+1/2根3*2sinxcosx+2cosx^2-1+3/2=-1/2cos2x+二分之根3倍sin2x+cos2
fx=sin2x-根号3*(1+cos2x)+a+根号3=2sin(2x-60°)+aT=pi,增区间[k*pi-pi/6,k*pi+5pi/12],k属于Z 2.由题意得-5pi/6<
(1)原式=2[(1/2)sin(x/2)+(根号3/2)cos(x/2)]=2sin[(x/2)+pi/3]所以当[(x/2)+pi/3]=2kpi+pi/2时,y最大值为2解得x=4kpi+pi/
f(x)=sin2x-2√3(cosx)^2+√3=sin2x-√3(1+cos2x)+√3=sin2x-√3cos2x=2sin(2x-π/3)π/4=再问:π/6=
y=2(2cos²x-1)+2倍根号三sin2xy=2cos2x+2倍根号三sin2xy=4(1/2倍cos2x+根号三/2倍sin2x)y=4sin(π/6+2x)三角函数解析式有了想要什
f(x)=sinxcosx+√3(cosx)^2-√3/2=(1/2)sin2x+(√3/2)cos2x=sin2xcosπ/3+cos2xsinπ/3=sin(2x+π/3)1.0
f(x)=cos2x+(√3)sin2x=2cos(2x-π/3)故Tmin=2π/2=π单增区间:由-π+2kπ≤2x-π/3≤2kπ,-2π/3+2kπ≤2x≤2kπ+π/3,得-π/3+kπ≤x
(1)f(x)=√3sin(2x+φ)-cos(2x+φ)=2[√3/2*sin(2x+φ)-1/2*cos(2x+φ)]=2sin(2x+φ-π/6)因为是偶函数∴函数f(x)在x=0处取最大值或最
f(x)=cos²x+√3sinxcosx+1=(cos2x+1)/2+√3/2*sin2x+1=(√3/2*sin2x+1/2*cos2x)+3/2=sin(2x+π/6)+3/21,最小
2cos^2-1=cos2xcos^2=(1+cos2x)/2f(x)=sinxcosx-(根号3)cos^2+(根号3)/2=sin2x/2-根号3*(cos2x+1)/2=sin2x/2-根号3*
f(x)=sin(2x+α)+根号3cos(2x+α)=2sin(2x+α+π/3)∵f(x)图像过(π/12,1)∴f(π/12)=2sin(π/6+π/3+α)=2sin(π/2+α)=2cosα