已知内接于圆点o的等边三角形ABC的边长是2根号3,则元的半径是?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:16:31
已知内接于圆点o的等边三角形ABC的边长是2根号3,则元的半径是?
已知,如图,△ABC内接于园O,AB为非直径的弦,∠CAE=∠B,求证:AE与圆O相切于点A

连接CO,并延长交圆于D点,连接AD和AO.得出CD为圆的直径,∠OAC=∠OCA,∠B=∠ADC因为CD为直径,所以∠ADC+∠OCA=90°.又因为∠B=∠CAE,∠B=∠ADC,∠OAC=∠OC

圆,已知,如图△ABC内接于圆O,OH⊥ AC于H,过A点的切线与OC的延长线交于点D,∠B=30度,OH=5根号3

∠AOC=2∠B=60°圆心角等于圆周角的2倍,所以∠AOC=60度∵AO=CO,OH⊥AC∴∠AOH=30°、△OAC为等边三角形,所据此求出OA长度,可以计算出劣弧弧AC的长;根据含30°角的直角

已知边长为√6的正方形内接于圆O,求圆O的内接等边三角形的周长

正方形的对角线长为二倍根号三,既为圆的直径,所以圆的半径为根号三,根据一个定理得圆的半径占等边三角形高的三分之二,所以等边三角形的高为二分之三倍根号三,所以等边三角形的边长为三,周长为九(你可以画图来

如图,已知矩形ABCD内接于圆O,圆O的半径为4,AB=4,将矩形ABCD绕点O逆时针旋转.

因为A,B,C,D四点共圆且矩形的对角线相等并且互相平分,即OA=OB=OC=OD,无论怎么绕着O点旋转,结果仍然四点在圆上且为矩形,形状大小都不变.因为0A=0B=AB=4,由勾股定理求出AD=BC

已知四边形ABCD内接于圆O,AB为圆O的直径,过C点作圆O的切线CF,过A点作CF的垂线交CF于于F点,较BC的延长线

已知四边形ABCD内接于圆O,AB为圆O的直径,过C点作圆O的切线CF,过A点作CF的垂线交CF于于F点,较BC的延长线于E点,角ABC+角DAB=135度,DC=√2厘米,求AE的长连接OD、OC、

已知圆O的半径为1.锐角三角形ABC内接于圆O,BD垂直于AC于点D,OM垂直AB于点M,且OM=0.2 ,则sin∠C

连结OAOB易证△AOM≌△BOM∠AOM=∠BOM则∠ACB=1/2∠AOB=∠B0M又∠CDB=∠OMB故△CDB∽△OMB故sin∠CBD=sin∠OBM=OM/OB=0.2

已知:如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D

图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠

已知:如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D,DE⊥AB于点E且交AC于点

(1)∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠D

已知:如图,等边三角形ABC内接于⊙O,点P是劣弧上的一点(端点除外),延长BP至D,使BD=AP,连接CD。 (1)若

解题思路:(1)根据已知利用SAS判定△APC≌△BDC,从而得到PC=DC,因为AP过圆心O,AB=AC,∠BAC=60°,所以∠BAP=∠PAC=12∠BAC=30°,又知∠CPD=∠PBC+∠B

已知:如图,△ABC内接于圆O,AB为直径,∠CBA的角平分线交AC于点F,交圆O于点D,DE⊥AB于E,且交AC于P,

(1)证明:∵AB为直径,∴∠ACB=∠ADB=90°∵BD平分∠ABC∴∠CBF=∠FBA∵∠DAF+∠AFD=90°∠CBF+∠BFC=90°∠AFD=∠BFC(对顶角相等)∴∠DAF=∠CBF=

如图,已知△ABC内接于圆O,AD平分∠BAC交圆O于点D,过D作圆O的切线与AC的延长线交于点E.(1)求证:BC平行

证明:1)连接OD因为DE与圆O相切于D所以DO⊥DE因为AD平分∠BAC所以弧BD=弧DC所以DO⊥BC(根据垂径定理)所以DE∥BC2)因为弧BD=弧DC所以DC=BD=2因为DE∥BC所以∠E=

如图,○0的半径为根号3,△abc是○o的内接等边三角形,将△abc折叠.使点a落在○0上,折痕ef平行于bc,则ef

连接OA,设EF=x∵△ABC是⊙O的内接等边三角形∵EF∥BC∴∠AEF=∠AFE=60°∴△AEF为等边三角形∴AO⊥EF∴OF=AOtan60°=33‍=1∴EF=2OF=2.

已知等边三角形ABC内接于圆O,点P在弧BC上,则角BPC的度数为多少?

连接AP,∠BPA=∠BCA=60度,∠CPA=∠CBA=60度,∠BPC=∠CPA+∠BPA=120度

如图,已知等边三角形abc内接于圆o,bd为内接正十二边形的一边,CD=5倍根号2

分析 由已知可知∠1=30° ∠2=90° 而CD=5√2  ∴2x平方=50 ∴x=5 就是圆o的半径等于5 这样就能

已知等边三角形ABC内接于圆O,(1)当点P为弦BC所在的劣弧上一点时,连接PA,PB,PC,求证:PA+PB等于PC.

把△APC以A点为圆心旋转,使AC和AB重合新组成的△APC'也为等边△所以PA=PB+PC

已知:如图等边三角形ABC内接于圆O点P是弧BC上,求证:PB+PC=PA

证明;∵⊿ABC是等边三角形∴AB=AC=BC,∠ABC=60º在PB的延长线上截取BD=PC,连接AD∵ABPC四点共圆∴∠ABD=∠ACP又∵BD=PC,AB=AC∴⊿ABD≌⊿ACP(

三角形ABC内接于圆O,连结AO并延长交圆O于点E,过点A作AD垂直BC于点D

1.连接OB,OB=OA=OE=r三角形ABE为直角三角形角EAB+角E=90角E与角C对应同弧,角E=角C角EAB=90-角E=90-角C=角CAD2.三角形ABE相似与三角形ADCAD/AC=AB

已知四边形ABCD内接于直径为3的圆O,对角线AC是直径,AC与BD交于点P.已知AB=BD,且CP=0.6,求四边形A

设BC=X,CD=y,∵△APB∽△DPC,△APD∽△BPC∴AB∶CD=AD∶BC=AP∶PC=(3-0.6)∶0.6=4∶1∴AB=4CD=4y,AD=4BC=4x.作BE⊥AD,交AD于E点,

如图,等边三角形ABC内接于圆O,边长为4cm,求图中阴影部分的面积

三角形的高为2倍根号3,内切圆的半径是2倍根号3/3,则阴影面积为12倍根号3-4π/3