已知关于x的方程x² 2x k-1 2=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:50:14
令y=x+1/x则y^2=x^2+1/x^2+2原式可以变为y^2+2y-3=0得y=1或y=-3y=1时,x+1/x+1的值为1+1=2y=-3时,x+1/x+1的值为-3+1=-2
1.证明方程判别式大于02第一种情况:判别式=0求出k再求解第二种情况:b或c中有1个=1,代入原方程求k再求解
-1=a-1/2-1/6-1/12-1/20'''''''-1/9900-a=1-1/2-1/6-1/12-1/20''''''-1/9900-a=1/100a=-1/100
由于函数f(x)=-x2+2x=-(x-1)2+1≤1,故函数f(x)的值域为(-∞,1].根据已知关于x的方程-x2+2x=|a-1|在x∈(12,2]上恒有实数根,的图象和直线y=|a-1|的图象
解题思路:由条件中的两个等量关系可直接求得方程两根,再用代入法或根与系数的关系证明出a=b=c.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("
由方程(1)得x=27a由方程(2)得:x=27−2a21由题意得:27a=27−2a21解得:a=2714,代入解得:x=2728.∴可得:这个解为2728.
一元二次方程x²-(3k+1)+2k²+2k=0b^2-4ac=(3k+1)^2-4(2k²+2k)=k^2-2k+1=(k-1)^2>=0方程总有实数根
∵sinQ+cosQ=(√3+1)/2sibQcosQ=m/2∴1+2xm/2=(√3+2)/2∴m=√3/2原式=(sin²Q-cos²Q)/(sinQ+COSQ)=sinQ-c
△=〔-(2k+1)〕^2-16(k-0.5)=4k^2+4k+1-16k+8=4k^2-12k+9=(2k-3)^2不论k取何值,都有△=(2k-3)^2所以方程总有实数根当b,c为腰长时,说明方程
设f(x)=x2+(12-2m)+m2-1,对称轴为x=m-14,△=(12−2m)2-4(m2-1)=174-2m,f(0)=m2-1,f(2)=m2-4m+4=(m-2)2,由题意得:△≥00≤m
1.k=2时lg(x+2)=2lg(x+1)等价于x+2=(x+1)^2且x+1>0即x^2+x-1=0且x>-1,所以x=(-1+√5)/2.2.方程lg(x+k)=2lg(x+1)等价于x+k=(
方程化为x^2+(2m+1)x+m^2-2=0.(1)方程有两个相等的实根,则判别式为0,即(2m+1)^2-4(m^2-2)=0,解得m=-9/4,此时方程化为x^2-7/2*x+49/16=0,分
%clc;clearall;globalfnqdfnqfnq=@(x)x^3-6*x^2+9*x-2;dfnq=@(x)3*x^2-12*x+9;tol=(1/2)*10^-4;x0=3.5;gmax
m,n是关于x的方程x^2+xk+4=0的两个根,m+n=-k,mn=4反比例函数y=k/x的图像过点P(m,n),n=k/mmn=k=4解得m=n=-2P(-2,-2)
去分母,得a+2=x+1,解得:x=a+1,∵x≤0,x+1≠0,∴a+1≤0,x≠-1,∴a≤-1,a+1≠-1,∴a≠-2,∴a≤-1且a≠-2.故答案为:a≤-1且a≠-2.
方程判别式△=[-2(m+1)]²-4·4·m=4m²-8m+4=4(m-1)²恒≥0,方程恒有实根.设两根分别为x1,x2,由韦达定理得x1+x2=2(m+1)/4=(
显然,k-1=1,即k=2再问:怎么列算式啊?详细点,ok?…再答:要使得3x^(k-1)+(k-2)x-8=0是关于x的一元一次方程,则x的最高次数项必须为1次项,即:k-1=1所以k=2该方程整理
2x²-3x+m+1=0m
分式方程去分母得:x+a=-x+2,解得:x=2−a2,根据题意得:2−a2>0且2−a2≠2,解得:a<2,a≠-2.故答案为:a<2,a≠-2.
3(x-2)=4x-5,3x-6=4x-5,3x-4x=-5+6,-x=1,x=-1,∵关于x的方程2x−a3-x−a2=x-1与方程3(x-2)=4x-5的解相同,∴把x=-1代入得:−2−a3-−