已知偶函数fx在[0,正无穷上是增函数,则不等式f

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:38:38
已知偶函数fx在[0,正无穷上是增函数,则不等式f
已知定义在R上的偶函数fx在区间0到正无穷上是单调增函数,若f1小于fx,求x取值范围

该偶函数区间0到正无穷上是单调增函数,那么在负无穷大到0上是单调减函数,且f(x)=f(-x),f(x)>f(1)=f(-1),那么x<-1或x>1.

一已知偶函数fx在区间(0,正无穷)上单调,则满足f(x方——2x-1)=f(x+1)的

x²-2x-1=x+1或者x²-2x-1=-x-1∴x1+x2=3,x3+x4=1∴x1+x2+x3+x4=4

已知函数fx是定义域是R的偶函数,若fx在(0,到正无穷)上是增函数 证明fx在(负无穷,0)上是减函数

取任意x1则-x1>-x2>0因为f(x)在(0,+∞)上是增函数所以f(-x1)>f(-x2)又因为f(x)是定义域是R的偶函数所以f(-x1)=f(x1),f(-x2)=f(x2)所以f(x1)>

已知函数fx 的定义域为(0,正无穷) 且fx 在定义域上为增函数 f(xy)=f(x)+f(y )

f(√2)=1/2利用恒等式f(xy)=f(x)+f(y)f(2)=f(√2)+f(√2)=12f(√2)=1f(√2)=1/2

已知f(x)是定义在(负无穷,正无穷)上的偶函数,且在(负无穷,0 ]上是增函数,

令y=-x,代入,f(0)+f(2x)=2f(x)f(-x)令x=y,代入f(2x)+f(0)=2f(x)f(x)两式相减,得到f(x)[f(-x)-f(x)]=0所以f(x)=0或者f(-x)-f(

已知定义在实数集R上的偶函数fx在区间[0,正无穷)上是单调增函数 1 求证fx在区间(负无穷,0]上是单调递减【这个我

解题思路:同学你好,本题主要是利用偶函数的定义和性质解决,把区间转化到一个区间上去,这样只要利用在这个区间上的单调性就可以解不等式,此法是处理此类型题目的通法解题过程:

已知函数fx是定义在(0,正无穷)上的减函数且满足fxy=fx+fy,f(1/3)=1

我怎么看不到问题...再问:(1)求f(1)(2)若fx+f(2-x)2,后面自己能解了吧。

已知fx为偶函数,且在(负无穷,0)上为减函数,若f(2x+1)>f(1/3),求x的取值范围

∵f(x)是偶函数,且在(-∞,0)上为减函数∴f(x)在(0,+∞)上为增函数∵f(2x+1)>f(1/3)∴2x+1>1/3∴x>-1/3

已知函数f(x)=a分之一-x分之一(a0)求,fx在(0,正无穷)上是增函数 若fx在【二分之一,2】上的值域是

f(x)=1/a-1/xf'(x)=1/x²当x∈(0,+∞)时,恒有f'(x)>0因此,f(x)是单调增函数.故:若x1<x2,且x1、x2∈(0,+∞),恒有f(x1)<f(x2)因此,有

已知偶函数fx在区间[0,+无穷)单调递增,则满足f(2x-1)

x<2/3再答:��Ϊ�ǵ�������������2x-1��1/3�ⲻ��ʽ��:x��2/3再答:ûʲô���ֵ��ȡֵӰ��再问:��������再答:��再答:˵˵������ô���ˣ�再

已知函数fx=1+1/x 【1】用定义证明fx在0正无穷上为减函数【2】判断函数fx的奇偶性

【1】f(x)=1+1/x,令X2>X1>0f(x2)-f(x1)=1/X2-1/X1=(X1-X2)/X1X2<0,∴f(x)在(0,+∞)为减函数.【2】f(-x)=1-1/x既

已知f(x)是R上的偶函数,且在(0,正无穷)上单调递增,并且f(x)

设x1f(x2)g(x1)-g(x2)=1/f(x2)-1/f(x1)=[f(x1)-f(x2)]/f(x1)f(x2)f(x1)-f(x2)>0,f(x1)f(x2)>0g(x1)>g(x2)所以1

已知f(x)是R上的偶函数,且在(0,正无穷)上单调递增,且f(x)

因为f(x)为偶函数,所以由对称性f(x)在负无穷到0上递减,所以1/f(x)在负无穷到0递增,所以-1/f(x)在负无穷到0递减再问:这么简单就好了?再答:哪一步推理有问题呢?如果设x1,x2,再用

已知函数fx=a^x+x²-xlna,a>1,(1)证明fx在(0,正无穷)上单调递增(2)函数y=

说明:第二问没有写完整,只能回答第一问.(1)证明:∵a>1,则lna>0,a^x>1(x∈(0,+∞))∴fx'=a^xlna+2x-lna=(a^x-1)lna+2x>0故fx在(0,+∞)上单调

已知函数FX的定义域为x不等于0,当x>1时,fx>0,且fxy fx+fy,求证fx在(0,正无穷)上为增函数.

任取x>0,k>1,则[f(kx)-f(x)]/(kx-x)=f(k)/(kx-x)∵k>1∴f(k)>0又kx-x>0∴[f(kx)-f(x)]/(kx-x)>0∴f(x)在(0,+∞)上单调递增

已知fx=(x2+ax+4)/x.若fx在[3,正无穷上恒大于0,求a的取值范围

f(x)=(x^2+ax+4)/x>0即有x+a+4/x>0在[3,+无穷)上恒成立即有a>-(x+4/x)在[3,+无穷)上恒成立现在就是要求x+4/x的最小值,设g(x)=x+4/x>=2根号4=