已知二阶矩阵A的特征值为1,2求
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:04:01
设λ是A的特征值,那么有:Ax=λx两边同乘2:2Ax=2λx两边同左乘2A的逆:x=2λ[(2A)^(-1)]x整理一下:[(2A)^(-1)]x=[1/(2λ)]x即1/(2λ)是(2A)^(-1
1/(2λ),基本上特征值和矩阵是满足普通的函数对应关系.
|λE-A|=0根为1,2,-3则|A|≠0(因为λ=0不是上面方程的根)设B是A的逆矩阵|λE-A|=0等价于|λAB-A|=0等价于|λB-E|=0(因为A是行列式不等于0)等价于|(1/λ)E-
行列式等于-2,计算过程如图.经济数学团队帮你解答,请及时采纳.
-2,2,5,把原来的特征值带入方程即可.第一个理解,设v是A的对应特征值a的特征向量,那么Bv=(a^2+2a+-1)v,v也是B的对应于a^2+2a+-1的特征向量.从而因为A有个特征值,对应三个
求特征值是吗A的绝对值-6A*+3A+2E的特征值=-6/x+3x+2为-15-5
|2A*|=2^3|A*|=8|A|^(n-1)=8|A|^2|A|=特征值的乘积=3所以原式=72再问:为什么|2A*|=2∧3|A*|,就这里不懂,麻烦给解释一下,再答:|kA|=k^n|A|
因为A的特征值为1,2,3所以A^2+2A+4E的特征值为7,12,19又|A|=1*2*3=6所以A*的特征值为6,3,2所以(A*)^2的特征值为36,9,4希望对你有所帮助!有疑问请追问或Hi我
矩阵的对应行列式的值等于特征值的积.矩阵E+A的特征值为1+1、2+1、3+1,即2,3,4所以|E+A|=2*3*4=24.
因为B=A-3A^2所以2E+B=(E-A0(2E+3A)4E+B=(E+A)(4E-3A)10E+B=(2E-A)(5E+3A)又A的特征值为:-1,1,2所以det(2E+B)=0det(4E+B
|A|=2*1*1=2A*的特征值为(|A|/λ):2/2=1,2/1=2,2/1=2(A*)^2+I的特征值为(λ^2+1):2,5,5再问:为什么A*的特征值为(|A|/λ)?再答:
因为矩阵A的特征值为1,-2,3所以2A+I的特征值分别为2+1=3,2×(-2)+1=-3,2×3+1=7所以B=(2A+I)^-1特征值为1/3,-1/3,1/7.
设λ是A的特征值,则λ^2-λ是A^2-A的特征值而A^2-A=0所以λ^2-λ=0所以λ(λ-1)=0所以λ=1或λ=0因为A可逆,所以A的特征值不等于0故A的特征值为1.
|2A|的特征值为8*1.8*3.8*(-2)=8.-16.24A^(-1)的特征值为,1.-0.5.1/3再问:怎么算的呢??再答:公式
你每次带入的特征值不一样,这是不对的.不同特征值对应的特征向量是不一样的也就是说当AB=B成立时,A^2C=4C成立,B与C是不相等的所以求特征值,应该是1+1+2*1+3*1=71+2+2*4+3*
A^2+2A+3E的特征值为1.1²+2+3=62.(-1)²-2+3=1-2+3=23.2²+2×2+3=4+4+3=11即特征值为:6,2,11.再问:E呢?为什么用
A2的特征值为1,1,4A2+2E的特征值为3,3,6
|A|=1*(-2)*3=-6A^-1的特征值为1,-1/2,1/3A^T的特征值与A的特征值相同:1,-2,3A*的特征值为:|A|/λ:-6,3,-2
对于矩阵函数f(A)来说,矩阵A有特征值a,那么f(A)就有特征值f(a)所以在这里,A有特征值1,2,-1那么B=f(A)=A^3-2A^2-A+2E那么特征值分别为f(1)=1-2-1+2=0f(
二阶矩阵特征多项式有是个二次多项式,已知它的两个根是1和2,所以特征多项式就是(t-1)(t-2)即t^2-3t+2再答:有哪里不清楚继续问吧再答:记得采纳我的答案哦~再问:谢谢啦