已知二维随机变量的概率密度函数f(x,y)=4xy,如何求p(x y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:56:55
第一题:由二维随机分布的归一性的A=2,F(X,Y)的函数求法是,对二维随机分布的密度函数积分,积分区域为(-∞,X)和(-∞,Y),结果见图片第二题:求法和第一题相同,答案如下:A=1/π概率为:1
回答:结果是参数为λ+μ的泊松分布.设P(X=k)={[e^(-λ)]λ^k}/k!,则P(X+Y=k)=∑{r=0,k}P(X=r)P(Y=k-r)余下的部分,由你自己完成.最后等于P(X+Y=k)
5题:f(x,y)=ke^(-y),00.f(y)=∫[0,y]e^(-y)dx=ye^(-y),y>0.(4)f(x|y)=f(x,y)/f(y)=1/y,0再问:第5题的(6)(7)题,麻烦你了,
X的边缘密度函数fX(x)=积分(负无穷,正无穷)f(x,y)dy=积分(负无穷,正无穷)1/6dy=积分(0,2)1/6dy=1/3Y的边缘密度函数fY(y)=积分(负无穷,正无穷)f(x,y)dx
设fxy(x,y)为概率密度函数x的边缘密度函数fx(x)=fxy(x,y)dy从负无穷到正无穷积分(积分时视x为常数)y的边缘密度函数fy(y)=fxy(x,y)dx从负无穷到正无穷积分(积分时视y
再问:额,第一题的积分公式是什么?再问:什么时候可以把指数放在前面?负的指数能放前面吗?就是像x^2的积分是1/3x^3,我好像一直用错公式了。再问:我再想想再问:我好像知道了。。。我再看看再问:第三
这是求偏导数,先对X求再对Y求!2不是平方的意思指的是求了两次偏导
其他情况密度为0,就不用积分了,0怎麼积分都是0F(x,y)=0(x
∫[0,1]{∫[x^2,x]kdy}dx=k∫[0,1]{(1/2)x^2|[上限x,下限x^2]}dx=∫[0,1](x-x^2)dx=k(1/2–1/3)=k/6=1--》k=6f(x)=∫[x
1)在第一象限内作以下三条曲线在第一象限内的部分y=xy=x^2x=1于是f(x,y)=k的区域即为这三条曲线围成的曲边三角形内部,记此区域为D其余部分f(x,y)均为零由归一化条件,(S表示积分号,
=.=这里的联合密度也是通过fX(x)=1这个边缘密度求出来的……于是x也就是有这个概率密度函数,就算你求出联合密度,在积分球边缘密度=.=结果还是一样PS:边缘密度确实是通过联合概率求出来的……再问
(1)p(x,y)=(1/3)e^(-3x)(1/4)e^(-4y)-->k=1/12.X和Y独立.(2)P(0
1)P(xy<1)很简单,就是对下图阴影的面积求二重积分∫(1/2~2)∫(1/2~1/y)1/(4x²y³)dxdy= ∫(1/2~2)1/(4(1/2)y
我觉得是不是题目有问题啊,应该是Y~fY(y),因为X已经给出了啊,是离散型随机分布,如果又X~fY(y),又给了X一个定义,那不矛盾了吗?我是这样理解的.
如图再问:答案不是你那样再答:答案是不是(1-e^(-y))*x^2/2再问:对,那只是一个答案,还有一个答案再答:还有一个是1-(x+1)*e^(-x)-e^(-y)*x^2/2?
对概率分布函数求全微分