已知二次曲线的方程x^2 9-k

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 12:14:35
已知二次曲线的方程x^2 9-k
已知关于x的方程x的平方-(2k+3)x+k的平方+3k+2=0

证:△=(2k+3)²-4×1×(k²+3k+2)=4k²+12k+9-4k²-12k-8=1>0所以无论K取何值,方程都有两个不相等实根.

已知:关于x的方程(k+1)x²+(3k+1)x+2k-2=0.

(1)(k+1)x²+(3k+1)x+2k-2=0当k=-1时,-2x-4=0,有1个实数根;当k≠-1时,△=(3k+1)²-4(2k-2)(k+1)=k²+6k+9=

已知关于x的方程x2+3k+1

∵关于x的方程x2+3k+1x+2k-1=0有实数根,∴b2-4ac=(3k+1)2-4×1×(2k-1)=3k+1-8k+4=-5k+5≥0,且3k+1有意义,则3k+1≥0,∴k≤1,k≥-13,

已知关于x的方程x的平方-(k+2)x+2k=0

x^2-(k+2)x+2k=0△=(k+2)^2-8k=k^2+4k+4-8k=k^2-4k+4=(k-2)^2≥0所以无论k取任何实数值,方程总有实数根另两边长恰是这个方程的两个根则x1+x2=k+

已知关于x的方程x2-(k+1)x+2k-2=0

证明:∵△=(k+1)²-4(2k-2)=k²-6k+9=(k-3)²≥0∴无论k为何值,方程总有实根∵等腰三角形∴方程有两相等的实根,即△=0∴k=3原方程为:x

已知关于x的方程x²-2(k-3)x+k²-4k-1=0

1、若这个方程有实数根,求k的取值范围2、若这个方程有一根为1,求k的值3、若以方程x²-2(k-3)x+k²-4k-1=0的两个根为横坐标、纵坐标的点恰在反比例函数y=m/x的图

已知k为非负实数,关于x的方程

1.1、x^2-(k+1)x+k=0,(x-k)(x-1)=0,x1=k>=0,x2=11.2、x=k代入2,k^3-k(k+2)+k=0,k1=0,k2=(1±√5)/2x=1代入2,k-(k+2)

已知方程1/4-x^2+2=K/x-2有增根,求K的值

1/4-x^2+2=K/x-21+2(2+x)(2-x)=-k(2+x)(方程两边同时乘以最简公分母(2+x)(2-x))1+8-2x^2=-2k-xk又因为方程有增根,即要使方程的最简公分母(2+x

已知关于x的方程x²-(k+2)x+2k=0

证明:(1)∵△=b^2-4ac=(k+2)^2-8k=(k-2)^2≥0,∴无论k取任意实数值,方程总有实数根.(2)分两种情况:①若b=c,∵方程x^2-(k+2)x+2k=0有两个相等的实数根,

已知关于x的方程X平方-(k+2)x+2k=0

1.Δ=(-(k+2))²-4*2k=k²+4k+4-8k=(k-2)²>=0恒成立,所以方程总有实数根.2.x=(k+2±(k-2))/2x1=k,x2=2等腰三角形:

已知:关于x的方程kx2+(2k-3)x+k-3=0.

(1)分类讨论:若k=0,则此方程为一元一次方程,即-3x-3=0,∴x=-1有根,(1分)若k≠0,则此方程为一元二次方程,∴△=(2k-3)2-4k(k-3)=9>0,(2分)∴方程有两个不相等的

已知关于x的方程x^2-(2k+1)x+4(k-0.5)=0

△=〔-(2k+1)〕^2-16(k-0.5)=4k^2+4k+1-16k+8=4k^2-12k+9=(2k-3)^2不论k取何值,都有△=(2k-3)^2所以方程总有实数根当b,c为腰长时,说明方程

已知关于x的方程kx^2+(2k-1)x+k-1=0

(1)kx^2+(2k-1)x+k-1=0(kx-k+1)(x+1)=0因为解是整数,所以(k-1)/k是整数所以k=-1(2)当k=-1时,-2y^2+3y+m=0也就是2y^2-3y-m=0y1+

已知关于x的方程x²-(k+1)x+ ¼ k²+1=0

由于x1x2=1/4k^2+1>0所以x1=x2>0于是得到2x1=k+1x1^2=1/4k^2+1解得k=3/2再问:那下面的人说的K=-1呢?我是这么做的:①X1=X2,△=0,则2K-3=O,K

已知关于x的方程lg(x+k)=2lg(x+1),(k为常数)

1.k=2时lg(x+2)=2lg(x+1)等价于x+2=(x+1)^2且x+1>0即x^2+x-1=0且x>-1,所以x=(-1+√5)/2.2.方程lg(x+k)=2lg(x+1)等价于x+k=(

已知关于x的方程x的平方-2(k-3)x+k的平方-4k+1=0

设方程的两个根分别为p、q,则p*q=k²-4k+1;因为(p,q)在反比例函数的图像上,所以p*q=M;结合上式得:M=k²-4k+1=(k-2)²-3≥-3;M的最小

已知:关于x的方程x2+(k-2)x+k-3=0

(1)证明:△=(k-2)2-4(k-3)=k2-4k+4-4k+12=k2-8k+16,=(k-4)2,∵(k-4)2≥0,∴此方程总有实根;(2)解得方程两根为,x1=-1,x2=3-k,∵方程有

已知关于x的方程(2k+1)x²-4kx+(k+1)=0

(1)当2k+1=0,即k=-1/2时,此方程是一元一次方程2x+1/2=0,x=-1/4(2)当2k+1≠0,即k≠-1/2时,此方程是一元二次方程二次项系数为2k+1,一次项系数为-4k,常数项为

二次曲线切线方程怎么求?

求导数.你的问题描述比较笼统.

已知关于x的方程x²-(k+2)x+2k=0

(1)(k+2)^2-8k>=0k^2-4k+4=(k-2)^2>=0成立(2)i>a是腰长则设b也是腰长a=1b=1所以1-k-2+2k=k-1=0k=1x^2-3x+2=0(x-2)(x-1)=0