已知三阶方阵A有三个特征值-1,2,3,则A-E=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:31:53
是不是【A+2E】的值?A+2E的特征值为3,1,4,所以【A+2E】=3*1*4=12.
可以,这个结论是显然的.1.因为A不是满秩,因此A必然奇异,即必存在至少一个0特征值;2.已知A是3阶方阵,且两个非零特征值分别为-1和-2;所以A的第三个特征值一定为0.
A的特征值是1,2,3则A^2的特征值是1^22^23^2即1494A的特征值是4*14*24*3即4812A^2-4A的特征值是1-44-89-12即-3-4-3则|A^2-4A|=(-3)*(-4
|B|=三个等征值是积=1*2*3=6而由BB*=|B|E=6E两边取行列式|B||B*|=|6E|,6|B*|=6³解得|B*|=6²=36
B=v1+v2+v3AB=Av1+Av2+Av3=s1v1+s2v2+s3v3A^2B=A^2v1+A^2v2+A^2v3=s1^2v1+s2^2v2+s3^2v3记P=(v1,v2,v3)是一个可逆
因为r(A+3E)=2所以|A+3E|=0所以-3是A的特征值所以A的全部特征值为-1,-2,-3所以A+4E的特征值为(λ+4):3,2,1所以|A+4E|=3*2*1=6.
A*=|A|A^(-1)|A|=1×2×3=6A*=6A^(-1)所以特征值为6×1/1=66×1/2=36×1/3=2
A正确,行列式为0,矩阵A不可逆B三个特征值,3个特征向量,相似C不同特征值对应的特征向量正交D,R(A)=2,齐次方程解的个数为1个,基础解系就是1个向量!您好,liamqy为您答疑解惑!如果有什么
A^2+2A+3E的特征值为1.1²+2+3=62.(-1)²-2+3=1-2+3=23.2²+2×2+3=4+4+3=11即特征值为:6,2,11.再问:E呢?为什么用
|A|=1*(-2)*3=-6A^-1的特征值为1,-1/2,1/3A^T的特征值与A的特征值相同:1,-2,3A*的特征值为:|A|/λ:-6,3,-2
A的特征值为1,-1,2A-5I的特征值是-4,-6,-3所以|A-5I|=(-4)*(-6)*(-3)=-72
A的特征值为1,-1/3所以A^2的特征值为1,(-1/3)^2=1/9所以|A^2|=1x(1/9)=1/9
是的方阵特征值为xA+aE的特征值是x+a
48再答:再问:怎么知道A是多少再问:全部乘起来?再答:求收藏再答:
A逆=1/\A\A*A*=\A\A逆\A\=1×2×(-3)=-6A*的特征值分别为-6÷1=-6,-6÷2=-3,-6÷(-3)=2所以A*+E的特征值为-6+1=-5,-3+1=-2,2+1=3从
B的特征值为(2λ^3-3λ^2):-1,5,-16
只知道特征值是没法求出A的,如果还知道特征向量就可以求出A来.