已知三角形ABC的三边分别为m的平方-n的平方,2mn,m的平方+n的平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:48:22
已知三角形ABC的三边分别为m的平方-n的平方,2mn,m的平方+n的平方
已知abc分别是三角形abc的三边长,判断

判断跟的情况主要用的是b*b-4*a*c,a为x平方前的代数,b是x前方的代数,c是常数,所以题中的b*b-4*a*c实际结果为(a+b)的平方-4*c*c/4=(a+b)的平方-c平方,根据平方差公

已知三角形ABC的三边长分别为a、b、c且均为整数.

(1)a+c>b=>c>b-a=5=>c>=6a+b+c=2a+5+c为奇数c为偶数则C的最小值为6(2)(a-b)^2+(a-c)^2+(b-c)^2=6=>(a-b,a-c,b-c)=(2,1,1

⑴已知三角形ABC的三边分别为5、12、13,求三角形ABC外接圆的半径.

1.由于5*5+12*12=13*13所以由勾股定理得此三角形为直角三角形所以斜边为其外接圆的直径,所以半径=13/22.等边三角形的中心就是外接圆的圆心边长=4所以半径=2/sin60=4/根号3由

已知三角形ABC三边长分别为4,5,6,则三角形ABC的内切圆的半径是

=2S/(a+b+c),其中S是三角形面积,a、b、c是三角形三边.另外S=根号下p(p-a)(p-b)(p-c),其中p=(a+b+c)/2所以r=13.125

如图所示,已知三角形ABC的三边长分别为a,b,c,它的三边中位线围成一个新三角形,这个新三角形的三边中位线又

因为小三角形的顶点分别为原三角形的三边中点,故小三角形的三边分别为原三角形三条中位线,所以小三角形的周长=(a+b+c)/2

已知三角形ABC的三边分别为m,n,根号下m^2+mn+n^2,求三角形ABC的最大角

cosC=[m^2+n^2-(根号下m^2+mn+n^2)^2]/2mn=-0.5,所以,最大角=120度

已知三角形ABC的三边的长分别为m^2-n^2,2nm,m^2+n^2,判断三角形的形状

直角三角形.因为:(m^2+n^2)^2-(m^2-n^2)^2=(2*n*m)^2故ABC为直角三角形

已知三角形ABC全等三角形DEF,三角形ABC的三边为M,N,3,三角形DEF的三边为5,P,Q,

因为两个三角形是全等三角形所以两个三角形三边全部相等已知三角形ABC有一个边是3所以另一个中必定也有一个是3三角形DEF一个边是5另一个也一定有一个边是5已知边长都是整数那么只有三种可能1、3为最小边

已知三角形ABC全等三角形DEF,三角形ABC的三边为M,N,3,三角形DEF的三边为5,P,Q.

1、因为三角形ABC全等三角形DEF,三角形ABC的三边为M,N,3,三角形DEF的三边为5,P,Q,所以m=5Q=32、根据三角形的一条边大于另外两边的差,小于另外两边的和所以N=PN>5-3N

已知三角形ABC的三边长分别为18,24,30,则最长边上的中线

∵18=6×3、 24=6×4、 30=6×5, ∴容易得出:18^2+24^2=30^2,∴△ABC是直角三角形,∴最长边是斜边,它上面的中线是它的一半,即为15.∴该三角形最长边上的中线长为15.

已知三角形ABC三边长分别为5'12'13'那么三角形的面积是

从勾股定理A^2+B^2=C^2可得:三角形两条直角边的平方之和等于第三条边的平方,三角形ABC正好满足5²+12²=13²,由此可得这个三角形是直角三角形.三角形面积=

已知三角形ABC的三边分别为12,16,21,求最大角的度数

因为大边对大角,所以21所对的角最大所以由余弦定理知:cosA=(12²+16²-21²)/(2×12×16)=-41/384=∴最大角度数为(π-arccos41/38

已知三角形ABC的三边为m,n,√m^2+mn+n^2,求三角形ABC的最大角

设长度为√m^2+mn+n^2的边所对的角为角1则cos角1=[m^2+n^2-(√m^2+mn+n^2)^2]/2mn=-1/2所以三角形ABC的最大角=角1=120度.

已知三角形ABC的三边的长分别为m.m-n.n,2mn,m.m+n.n,判断三角形的形状?

是直角三角形因为(m2-n2)2+(2mn)2=m4-2m2n2+n4+4m2n2=m4+2m2n2+n4(m2+n2)2=m4+2m2n2+n4所以(m2-n2)2+(2mn)2=(m2+n2)2符

已知三角形ABC的三边的长分别为m^2-n^2,2mn,m^2+n^2,判断三角形的形状.

a=m^2+n^2b=m^2-n^2c=2mnb^+c^2=(m^2-n^2)^2+(2mn)^2=m^4-2m^2*n^2+n^4+4m^2*n^2=m^4+2m^2*n^2+n^4=(m^2+n^