已知三角形abc三内角abc成等差数列ab等于1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:05:25
已知三角形abc三内角abc成等差数列ab等于1
已知abc分别时三角形ABC的三个内角ABC所对的边若三角形面积为二分之根号三c=根号三,且ABC成等差数列

因为ABC成等差数列,所以∠A+∠B+∠C=3∠B=180,所以∠B=60,S=1/2*a*c*sinB=1/2*a*根号3=2分跟三,所以a=1,所以a边的高为S*2/a=跟3=c,所以c是直角边,

三角形ABC三内角ABC对应三边a b c成等差数列,求角B的范围!

a+c=2b想象一下,固定A,C点用一个长3b的绳子套在A,B,C3点上B为动点,这是始终满足a+c=2b那么要让绳子围出的图形是3角形角B的角度就只能在060度之间

在三角形ABC中,三内角ABC的对边分别是abc,且ABC成等差数列,求三角形ABC为等边三角形.

ABC成等差数列,A+C=2B=π-B,3B=π,B=π/3,abc成等比数列,b^2=ac,由余弦定理,b^2=a^2+c^2-2ac*cosπ/3=a^2+c^2-ac=ac,a^2+c^2-2a

已知三角形ABC中,三内角A,B,C的度数依次成等差数列,三边长为a,b,c依次成等比数列.判断三角形ABC形状

假设a=y/q,b=y,c=yq因为三内角A,B,C的度数依次成等差数列所以B=60°根据边的关系求三角形的形状b^2=a^2+c^2-2accosBy^2=(y/q)^2+(yq)^2-y^2即(y

已知三角形ABC,求证三角形内角和等于180度!

已知:三角形ABC中,角A、角B、角C为内角.求证:角A+角B+角C=180度.证明:延长BC到D,过点C作CE//BA,则有:角A=角ACE(两直线平行,内错角相等)角B=角ECD(两直线平行,同位

在三角形ABC中,三内角A,B,C成等差数列.

(1)∵△ABC中,A、B、C成等差数列∴A+C=2B,又A+B+C=180°∴B=60°由余弦定理知:b²=a²+c²-2accosB又b=7,a+c=13联立三式解得

已知A,B,C为三角形ABC的三内角

1.三角形的三内角和等于180度2.三角形的一个外角等于与它不相临的两内角和.3.等边三角形的三内角分别为60度4.等边直角三角形的两锐角分别为45度5.在直角三角形内可以用三角函数来求,如sin30

三角形ABC三内角ABC依次成等差数列,则sinA的平方+sinC的平方的取值范围是什么?

三角形ABC三内角ABC依次成等差数列则有A=60-X,B=60C=60+XX>=0所以(SINA)^2+(SINC)^2=(SIN(60-X))^2+(SIN(60+X))^2=(SIN60*COS

三角形ABC的内角ABC的对边分别为abc,已知b=3,三个内角ABC成等差数列,cosC=根号6/3,求c

三个内角成等差数列所以B=60°cosC=根号6/3sin^2C+cos^2C=1sinC=根号3/3用正弦定理b/sinB=c/sinC可得c=根号2

已知三角形ABC中3b=2√3asinB,且cosB=cosC,求三角形ABC三内角.

cosB=cosC,∠B=∠C3b=2√3asinB,用正弦定理,两边消去2R,3sinB=2√3sinAsinBsinA=√3/2,A=60°,120°A=60,B=C=60°A=120,B=C=3

设三角形ABC的三内角ABC的对边长分别为abc ,已知abc成等比数列 sinAsinC=3\4 1 求角B的大小

(1)a、b、c成等比数列,则b2=ac由正弦定理:a/sinA=b/sinB=c/sinC,其对应角的正弦值也成等比数列,A或C的正弦值大于B的正弦值则sinAsinC=sin2B=3/4sinB=

三角形中三内角ABC成等比数列且三边abc满足b2-a2=ac求角B

B=60度三角形中三内角ABC成等比数列可得A=30度B=60度C=90度(1)或A=90度B=60度C=30度(2)当为(2)时,a=2cb=根号3ca>0,c>0,则ac>0此时,b>a,所以b^

在三角形ABC中,已知内角A=60°,

2√3/sin60°=AC/sinxAC=(2√3/sin60°)sinx2√3/sin60°=AB/sin(180°-60°x)AB=(2√3/sin60°)sin(180°-60°-x)AB=(2

已知锐角三角形ABC的三内角A,B,C.

那么a+b=2√3,ab=2,解得a=√3-1,b=√3+1sin(A+B)=sinC=√3/2,解得C=60度c^2=a^2+b^2-2ab*cosC=8-4/2=6,解得c=√6Sabc=ab*s

已知三角形的三个内角 ABC成等差数列,而ABC三内角的对边abc成等比数列,证明三角形ABC为正三角形.

由等差数列有2B=A+C,由等比可得b^2=ac,正弦定理得出Sin^2(B)=SinA*SinC,又因为Sin^2(B)=(1-Cos2B)/2,代入,则1-Cos2B=2SinA*SinC,然后第

1.已知A,b,C是三角形ABC三内角,根3sinA-cosA=1

1.已知A,b,C是三角形ABC三内角,根3sinA-cosA=11)求角A2)若(1+sin2B)/(cos^2B-sin^2B)=-3,求tanB解析:1)由于sin^A+cos^A=1,所以si

已知三角形ABC中,三内角A,B,C的角度.依次成等差数列,三边长a,b,c依次成等比数列,判断三角形ABC的形状

假设,三内角A,B,C的等差为x,则:A=B-X,C=B+X,A+B+C=B-X+B+B+X=180,B=60a,b,c依次成等比数列,即:b^2=ac;根据余弦定理:b^2=a^2+c^2-2acc

若三角形ABC的三内角成等差数列,则1+sin2B/sinB+cosB=

三角形ABC的三内角成等差数列:A+C=2BB=180/3=60(1+sin2B)/(sinB+cosB)=(sin^2B+cos^2B+2sinBcosB)/(sinB+cosB)=(sinB+co

三角形abc中,内角A,B,C对边的对边分别是abc,已知abc成等比数列,且cosB等于四分之三

(1)由已知a,b,c等比,所以b²=ac.由余弦定理:b²=a²+c²-2ac*cosB,ac=a²+c²-2ac(3/4),即2a