已知一个圆的圆心为a 2 1,且与圆X的平方=Y的平方-3X=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:51:06
猜想ΔBCP是等腰三角形连接O2B,过A作⊙O2的直径AD,连接 BD.∵BO2和DO2均是⊙O2的半径 ∴BO2=DO2 ∴∠O2BD=∠O2DB∵∠AO2
答案是:(X+1/4)^2+(Y+1/12)^2=1/16或(X-1/4)^2+(Y-1/12)^2=1/16分析思路:1.与Y轴相切:R(半径)=圆心X轴坐标.(以下设圆心坐标为a、b)2.圆心在X
(a)L:y=mx+3倍根号2圆C:x^2+y^2=9画图,设L与圆C交于B、C.TAN
设俩圆相交的线段长为Y,圆O1到该线段距离X,则由直角三角形勾股定理得(Y/2)^2+X^2=R^2(Y/2)^2+(d-X)^2=r^2由此可得R^2-X^2=r^2-(d-X)^2即2X^2-2d
(2)设M(x0,y0),P'(3,y1),Q'(3,y2),易知,P(-1,0),Q(1,0).由M在圆上有:x0^2+y0^2=1,由P、M、P'三点共线,y1/4=y0/(x0+1),所以,y1
如果你要画那圆没半径要求,就直接在线上点一下,然后在已有圆上点一下就出来了(要把切点捕捉打开).如有半径要求就要算下先,已有圆半径+要画的圆的半径,以已有圆的圆心画圆,与直线的两个交点就是要画的圆的圆
由题意可知曲线方程为y^2/b^2-x^2/a^2=1双曲线渐进线的方程为y=[+(-)a/b]x又双曲线顶点A'与点A关于直线y=x对称可知A'(0,√2)所以b=√2又由渐进线与圆A相切,可知渐进
圆方程是x²+y²=1,抛物线方程是x²=4y,联立,得:y²+4y-1=0y=-2±√5则存在满足要求的点P,点P的纵坐标是y=-2+√5
设圆心(x,0)根据点到直线的距离公式|4x-29|/5=5有因为X是整数所以X=-1圆方程(x+1)^2+y^2=25
解题思路:圆与圆之间的位置关系和有关公切线的知识计算.解题过程:最终答案:D
ab中点设为e圆心到直线ab的距离oe=2-r直角三角形aoe中ae=2/2=1,oe=(2-r),斜边ao=r所以1^2+(2-r)^2=r^2则r=4/5
x^2+(y-1)^2=1(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r.
(1)设双曲线C的渐近线方程为y=kx,即kx-y=0.∵该直线与圆x2+(y−2)2=1相切,∴双曲线C的两条渐近线方程为y=±x.设双曲线C的方程为x2a2−y2a2=1,∵双曲线C的一个焦点为(
∵圆x2+y2-10x=0化成标准方程,得(x-5)2+y2=25∴圆x2+y2-10x=0的圆心为F(5,0)∵双曲线x²/a²-y²/b²=1的一个焦点为F
1、设圆心(m,0)圆心到切线距离等于半径所以|4m+0-29|/√(4²+3²)=5|4m-29|=254m-29=±25m是整数所以m=1所以(x-1)²+y&sup
(1)设圆心为M(m,0)(m∈Z),∵圆C与直线4x+3y-29=0相切,且半径为5,∴圆心,到直线4x+3y-29=0的距离d=r,即|4m-29|/5=5,即|4m-29|=25,∵m为整数,∴
1、设圆心(m,0)圆心到切线距离等于半径所以|4m+0-29|/√(4²+3²)=5|4m-29|=254m-29=±25m是整数所以m=1所以(x-1)²+y&sup
(X+3)²+(Y+2)²=3²
答案没错,刚开始我也没看懂图大概就是我给你这个,这道题的主要意思就是O的半径和O1的圆心组成的图形所以OO1=3-2=1 这就是答案了
由题意可知,圆心c到直线x=-1/4的距离和与点F的距离相等,因此轨迹E为一开口向左的抛物线,焦点为F点,所以轨迹E为y^2=-1/2x兄弟,能力有限,下面的不能做了.忘谅解!