已知△ABC=90d,e分别在bc ac上ad⊥de且ad=de
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:15:24
△BDF中∠BFD+∠B+∠FDB=180∠FDE+∠EDC+∠FDB=180又因∠FDE=∠B所以∠EDC=∠BFDBD=CE,BF=CD也可得出△BDF与△CDE相似所以∠DEC=∠BDF在由△B
解题思路:(1)根据等边三角形的性质证明△ABE≌△CAD就可以得出结论;(2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出结论.解题过程:如图,已知△ABC为等边三角形,点D
证明:∵DB=DA∴∠DBA=∠A=30°(等边对等角)∵PF⊥AC∴PF=1/2AP(30°角所对边等于斜边一半)同理PE=1/2PB∴PE+PF=1/2(PA+PB)=1/2AB(等量代换)在Rt
因为∠A=30°,所以PF=1/2AP因为BD=AD,所以∠ABD=∠A=30°,所以PE=1/2BP所以PE+PF=1/2(BP+AP),即PE+PF=1/2AB因为∠A=30°,所以BC=1/2A
∵∠DFB=∠CFE(对顶角相等)∠B=∠E∴∠BDE=∠BCE=∠ACB=90°∴∠ADE=90°
证明:∵∠ACB=90°∴∠A+∠B=180°-∠ACB=90°∵∠B=∠E∴∠A+∠E=90°∴∠ADE=180°-(∠A+∠E)=90°
⑴因∠ACB=90°,则∠ECF=180°-90°=90°⑵因∠CFE与∠DFB为交叉角,所以∠CFE=∠DFB∠B=∠C,△BDF与△ECF中,已有两个角相等,则∠BDF=∠ECF=90°∠ADE=
证明:∵D,F分别为AC,BC的中点∴DF=1/2AB(中位线定理)∵∠ACB=90°,E是AB的中点⊥CE=1/2AB(直角三角形斜边中线等于斜边一半)∴DF=CE
AD²+BE²=AC²+CD²+BC²+CE²=AB²+DE²再问:能更详细些吗??谢谢!再答:△ACD△BCE都是直角
(1)因为∠C=90°,∠B=30°所以∠CAB=60°因为AD平分∠CAB所以∠CAD=30°∠BAD=30°因为EF⊥AD所以∠AEF=60°∠AFE=60°所以三角形AEF是等边三角形所以AE=
(1)因为∠B=30°,∠C=90°所以AB=2AC=12BF=y=AB-AF=12-AF;因为EF⊥AB,∠A=60°,所以∠AEF=30°,所以AF=1/2AE=1/2(AC-CE)=1/2(6-
做PG⊥BC于G,PM⊥AB于M∴根据等腰直角三角形:PM=√2/2AP,BMPG是矩形,那么BG=√2/2AP∵PB=PD,那么BG=DG=√2/2APBD=√2AP延长AC,截取CF=AP,做CH
是不是这么证得:1.利用A+B+C=180,证明C=180-(A+B);2.由DE//AC,证得CED+C=180;最后综上两等式,证得所求.
本题主要运用同底等高三角形面积比等于底边长比的知识∵AD是BC边上的中线∴BD=BC/2∴S△ABD=S△ABC/2=8/2=4∵E是AD边上的中线∴DE=AD/2∴S△BDE=S△ABD/2=4/2
直角三角形中,斜边的中线等于斜边的一半,所以AD=1/2BC根据三角形中位线的性质,得到EF=1/2BC所以AD=EF
(1)延长AO交BC于H,∵AB=AC,OB=OC,∴H是BC中点,AH⊥BC.由D,E,F,G分别是AB,OB,OC,AC中点,∴DE∥AO,DE=(1/2)AO,GF∥AO,GF=(1/2)AO,
S三角形DAP+S三角形DBP=S三角形DABDA*FP+DB*PE=DA*BC则PE+PF=BC
过M作MN⊥AC交AC于N,∵BC=6,∠A=30°,∴AB=12,AC=√(12²-6²)=6√3,由AM=4,∴MN=2,由CD=x,∴AD=6√3-x,△ADM面积为y=1/
∵DE//BC.∴∠ADE=∠B=60°∠AED=∠C=60°所以:△ADE是等边三角形.