已知∠ABO,点C是OB边上的一点,用尺规
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 09:12:29
过A、C点分别作AD⊥x轴,CE⊥x轴,垂足为D、E,设A(x,y),∵C为AB的中点,∴C点纵坐标为12y,∵点AC都在双曲线上,∴C(2x,12y)∴DE=x,∴BE=x,∵OB=6,∴x=2,∵
嗯,这题不能用角平分线定理做.因为(3)的结论就是角平分线定理.(1)过P作PE⊥AB,交AB于E,过P作PF⊥OB,交OB于F∵OA=8OB=6∠AOB=90°∴AB=10∵∠CBO=∠ABC∴PF
根据角平分线定理,即OB/BA=OC/CA,BA=√(OB^2+OA^2)=10.所以OC/CA=6/10=3/5,再由OC+CA=OA=8,可以得到OC=3,OA=5..在直角三角形OBC中,BC=
以O为原点,OA,OB为x,y轴建立直角坐标系,且A(4,0),B(0,3)那么三角形OAB的内切圆方程为(x-1)^2+(y-1)^2=1以PA,PB,PC为直径的圆面积:S=π[|PA|^2+|P
以O为圆心,以OC为半径画圆弧,交OA于D.分别以C、D为圆心,以OC为半径画圆弧,两圆弧相交于P.连接C、D.则直线CD就是所求直线.
在OB边上取点D使CO=CD(用圆规截取),在OA边上随便取一点E,连结DE,用尺规作DE的垂直平分线交DE于F,最后过C、F两点作一直线即可作出过点C与OA平行的直线.
连接AB,EF,得到一点D,连接OD,OD与AE的交点即为所求点这么做的意思是角平分线上的点到两边的距离相等因为你的要求是在AE上找点P,所以你可以
AB=AC,D、E分别是中点所以AD=AE又AB=AC共用角A所以△ABD≌△ACE,所以∠ABD=∠ACE,又△ABC等腰,∠ABC=∠ACB,所以∠DBC=∠ECB,所以△OBC是等腰三角形,所以
(1)证明:∵△AOB和△ODC是等腰直角三角形,BE平分直角ABO,DF平分直角ODC,∴∠A=∠AOB=45°,∠DOC=∠C=45°,∠ABE=∠OBE=∠ODF=∠CDF=45°,∴△ABE,
C为AB中点,则OC垂直AB,由垂径定理容易得到(1);(2)作BG垂直AO,则BG为腰AO上的高,故有BG=AB/2=2根号3在RT△ABG中,由勾股定理知道AG=6,且角A=30度,所以角AOB=
1、求向量GA+向量GB=2*向量GM又因为G是△ABO的重心所以向量GO=-2*向量GM所以求向量GA+向量GB+向量GO=02、方一:特殊值设p在A点,则Q在中点所以m=1,n=1/2所以1/m+
直接应用梅涅劳斯定理.又直线CED截△AOB有:OE/EA*AC/CB*BD/DO=1而AC/CB=1/2BD/DO=1/2所以OE/EA=4则λ=4/5
∵A、B、C是直线l上的三点,向量OA,OB,OC满足:OA=[y+2f′(1)]OB−lnx2•OC,∴y+2f′(1)-lnx2=1 ①,对①求导数得y′-12x=0,∴f′(1)=12
(1)如图所示;(2分)(2)①等腰梯形;(4分)②D关于x轴的对称点D′,连接CD′,则D′(-1,-3),设过点CD′的直线解析式为:y=kx+b(k≠0),把C、D′两点坐标代入得,−3=−k+
建立直角坐标系吧以OB为x轴,OA为y轴设点P坐标(x,y)过P作PM垂直x轴于点M,作PN垂直y轴于点N于是PA²=AN²+PN²=(3-y)²+x²
延长AO交⊙O于E,连结DO、DE.∵PD=DC,∴∠C=∠CPD,∴∠CDP=180°-2∠C.∵DC切⊙O于D,∴∠CDO=90°,∴∠CDP+∠ODA=90°,∴180°-2∠C+∠OCA=90
以内切圆圆心为原点做直角坐标系,容易求得内切圆半径为2所以圆的方程为x^2+y^2=4设P点坐标(a,b)则a^2+b^2=4算出各点坐标A(-2,6)B(4,-2)C(-2,-2),则P到A、B、C
设直线AB的方程为:x=ty+m,点A(x1,y1),B(x2,y2),直线AB与x轴的交点为M(m,0),x=ty+m代入y2=x,可得y2-ty-m=0,根据韦达定理有y1•y2=-m,∵OA•O