已知y=sin(π÷4-2x),求函数的最小正周期

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:09:30
已知y=sin(π÷4-2x),求函数的最小正周期
已知函数y=2sin(2x-π/4),求对称轴与对称中心

分析:函数y=2sin(2x-π/4)的图象的对称轴的位置为取最值的地方,对称中心为函数值为0的地方.因为2x-π/4=kπ+π/2(k为整数)解得x=kπ/2+3π/8,所以函数y=2sin(2x-

三角函数最值问题已知x,y,z为实数,求:f(x,y,z)=[sin(x-y)]^2+[sin(y-z)]^2+[sin

sin^2(x-y)+sin^2(y-z)+sin^2(z-x)=[1-cos2(x-y)+1-cos2(y-z)+1-cos2(z-x)]/2=3/2-[(cos2xcos2y+sin2xsin2y

已知函数y=2sin(2x+π/3)

振幅为2;周期为π;初相为π/3单增区间:kπ-5π/12≦x≦kπ+π/12对称轴:x=﹙1/2﹚kπ+(1/12)π

已知函数y=2sin(2x+φ)(|φ|

(0,1)代入原式知sinφ=1/2因为|φ|

已知函数y=4sin(2x+π/4)+1,x属于(0,π),求单调区间

y=4sin(2x+π/4)+1单调区间为:单调增:2kπ-π/2

已知函数y=sin^2X+sinX+cosX+2

y=sin²x+sinx+cosx+2=(1-cos2x)/2+√2sin(x+л/4)+2=(1/2)*sin(2x+л/2)+√2*sin(x+л/4)+5/2;=(1/2)*sin(2

已知函数y=-2sin(3x+π/3)

我列个去,就算我高中毕业到现在已经8年了,我也看的出来1楼的乱说的撒,值域明显是[-2,2]嘛

y=sin(π/4+x/2)sin(π/4-x/2) =sin(π/4+x/2)sin[π/2-(π/4+x/2)]

sin(π/4+x/2)sin(π/4-x/2)=sin(π/4+x/2)sin[π/2-(π/4+x/2)]∵π/4=π/2-π/4∴sin(π/4-x/2)=sin(π/2-π/4-x)=sin[

已知函数y=4sin(x/2-π/3)求:振幅、周期、最大值与最小值

模型y=Asin(ωX+ψ)振幅A=4周期T=2π/ω=4π最大值=A=4最小值=-A=-4

①已知函数y=1/2sin(2x+π/6),x∈R

(1)x-π/12π/65π/122π/311π/122x+π/60π/2π3π/22πy=1/22sin(2x+π/6)01/20-1/20(2)由题意,A=1/2设最小正周期为T,则T/2=4π/

已知函数y=2cosxsin(x+π/3)-根号3 *(sin^2) x +sinxcosx

y=2cosxsin(x+π/3)-根号3*(sin^2)x+sinxcosx,后两项先提出一个sinx,然后括号内部分用叠加原理,得到y=2cosxsin(x+π/3)+2sinxcos(x+π/3

已知函数y=1/2sin(2x+π/6)+5/4 1.当函数y取最大值是求自变量x的集合,指出函数y=2sin(x/2+

函数y取最大值,2x+π/6=2kπ+π/2即x=kπ+π/6y=2sin(x/2+π/3)的图像是由y=sinx先纵坐标不变,横坐标扩大2倍变为y=sinx/2再向左平移π/3个单位,变为y=sin

证明sinx+siny+sinz-sin(x+y+z)=4sin((x+y)/2)sin((x+y)/2)sin((x+

sinx+siny+sinz-sin(x+y+z)=4sin[(x+y)/2]sin[(x+z)/2]sin[(y+z)/2]sinx+siny+sinz-sin(x+y+z)=2sin[(x+y)/

已知函数y=2sin(3x+π/3),x属于R

x∈[-2π/9,π/6]3x+π/3∈[-π/3,5π/6]sin(3x+π/3)∈[-√3/2,1]2sin(3x+π/3)∈[-√3,2]函数的最大值=2函数的最小值=-√3

已知函数fx=(1+1/tanx)sin^x-2sin(x+π/4)sin(x-π/4)

f(x)=(1+1/tanx)*(sinx)^2-2sin(x+π/2)sin(x-π/4)=(1+cosx/sinx)*(sinx)^2+2sin(x+π/4)cos[(x-π/4)+π/2]=(s

已知y=sin(2x+π/6) 求值域

任何正弦函数,只要系数是1,值域就是[-1,1]

已知f(x)的解析式为:y=2sin(2x+π/6)

g(x)=f(x+π/12)=2sin[2(x+π/12)+π/6]=2sin(2x+π/3),g(-x)=2sin[2(-x)+π/3]=-2sin(2x-π/3)≠土g(x),∴g(x)非奇非偶.