已知y=1 xe^y,求一阶导数等于e

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:41:48
已知y=1 xe^y,求一阶导数等于e
函数y=1+xe^y 求二阶导数的问题

y=1+xe^y==>y'=(1+xe^y)'==>y'=(xe^y)'==>y'=1*e^y+xe^y*y'==>y'(1-xe^y)=e^y==>y'=e^y/(1-xe^y)因为y=1+xe^y

y=Xe^x Cosx 的导数

y=e^x(xcosx)=e^x(xcosx)+(xcosx)'e^x=xe^xcosx+e^x*cosx-e^x*x*sinx.

求方程y=1+xe^y所确定的隐函数y的导数dy/dx

两边对x求导dy/dx=0+d(xe^y)/dxdy/dx=e^y*dx/dx+x*e^ydy/dxdy/dx=e^y+x*e^ydy/dxdy/dx-x*e^ydy/dx=e^ydy/dx=e^y/

已知y=f(x^2),其中f(x)具有一阶连续导数,求dy/dx.

应该等于2xf'(x^2),看成复合函数就行了……

已知y=y(x)是由方程xy=1-e的y次方,所确定的隐函数,求y'(0)一阶导数

原方程是xy=1-e^y?如果是的话将等式两边对X求导数得y+xy'=e^y*y'则y‘=y/(e^y-x)y'(0)=y/e^y

求函数y=xe^(-2x)的导数

y'=x'*e^(-2x)+x[e^(-2x)]'=e^(-2x)+xe^(-2x)*(-2x)'=e^(-2x)-2xe^(-2x)=(1-2x)e^(-2x)

求由方程y-1=xe^y所确定的隐函数的二阶导数y".

y-1=xe^y两边同时对x求导得y'=e^y+xe^y*y'(1-xe^y)y'=e^yy'=e^y/(1-xe^y)=e^y/(2-y)y''=(e^y*y'+e^y*y')/(2-y)²

偏导数数学题,急1求一阶偏导数F(x,y)=见图

对于多元函数求导及积分上限函数求导,不知道你熟悉不 还是在哪里不懂,有困惑这个题,我觉得有两点要注意 一是积分上限函数求导,二是要判断出 加法后的积分式实际上是一个常数,

求一阶偏导数:z=arctan√(x^y )

z'(x)=1/[1+(x^y)]*1/2√(x^y)*yx^(y-1)=yx^(y-1)/{2√(x^y)[1+(x^y)]}z'(y)=1/[1+(x^y)]*1/2√(x^y)*lnx*x^y=

求由方程y=xe^y+1所确定的隐函数的导数?

两边对x求导:y'=e^y+xy'e^y得:y'=e^y/(1-xe^y)再问:怎么感觉不对捏再答:是不是指数为y+1,而不是y呀?再问:指数就是y吖我题目没错再答:指数是y的话,我做的就没错。

求导:已知y=cos(xy),求y的一阶导数

对两边分别求导,得dy/dx=-sin(xy)*(x*dy/dx+y)则dy/dx(1+sin(xy)*x)=-sin(xy)*y所以dy/dx=(-sin(xy)*y)/(1+sin(xy)*x)

y的二阶导数=1+(y的一阶导数)的平方,求微分方程的通解

由题意知y''=1+(y')^2令y'=p,则y''=p'=dp/dx于是原方程可以写成:p'=1+p^2,所以dp/(1+p^2)=dx对等式两端同时积分得到:arctanp=x+c1(c1为常数)

y=1-xe^y隐函数的导数

y=1-xe^y两边同时对x求导得y'=-e^y-xe^y·y'y'(1+xe^y)=-e^yy'=-e^y/(1+xe^y)

y=1-xe^y 求由方程确定的隐函数的导数y′

y'=-e^y-xe^y*y'(1+xe^y)y'=-e^yy'=-e^y/(1+xe^y)

y=xe^x 求函数导数

解y=xe^xy'=(x)'e^x+x(e^x)'=e^x+xe^x

y=xe^(-x),求y的n阶导数

y=xe^(-x),所以ye^x=x连续n次求导可得递推公式y(n)e^x+y(n-1)e^x=(-1)^n所以y(n)=(-1)^n(x-n)e^(-x)

高等数学求隐函数y的二阶导数:y=1+xe^y谢谢

y=1+xe^y方程两边求导y'=e^y+xe^y*y'y'(1-xe^y)=e^yy'=(e^y)/(1-xe^y)y''={e^y*y'*(1-xe^y)+e^y[e^y+xe^y*y']}/(1

求隐函数y=1-xe^y的导数

y'=-(e^y+xy'e^y)-y'=e^y+xy'e^yxy'e^y+y'=-e^y(xe^y+1)y'=-e^yy'=-e^y/(xe^y+1)y'=-e^y/(xe^y+1)

如何求隐函数y=1-xe^y的导数?

错,该问题要用到复合函数的求导公式.(ln(1-y))’=-y’*(1/(1-y))