已知x1x2是方程2-x=log2x的两实根,则有

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 08:52:52
已知x1x2是方程2-x=log2x的两实根,则有
已知一元二次方程x²-2x+m-1=0.设x1,x2是方程的两个实数根,且满足x1²+x1x2=1,

x1+x2=2x1x2=m-1x1²+x1x2=x1(x1+x2)=2x1=1x1=1/2x2=3/2x1x2=m-1=3/4m=7/4

已知x1x2是方程2x^2+3x-4=0的两个根,求x1^5·x2^2+x1^2·x2^5的值

x1+x2=-3/2x1*x2=-4/2=-2x1^5·x2^2+x1^2·x2^5=x1²x2²(x1³+x2³)=(x1x2)²(x1+x2)(x

已知x1x2是方程2x^2+3x-4=0的两个根 求x1^5*x2^2+x1^2*x2^5的值

x1+x2=-3/2x1x2=-4/2=-2x1^5*x2^2+x1^2*x2^5=(x1x2)^2*[x1^3+x2^3]=(x1x2)^2*(x1+x2)*[x1^2-x1x2+x2^2]=(x1

已知x1x2是方程2x^2-3x-1=0的两个根求下列各式的值(1)(x1-x2)^2 (2)x1^2+3x1x2+x2

已知x1x2是方程2x^2-3x-1=0的两个根求下列各式的值(1)(x1-x2)^2(2)x1^2+3x1x2+x2^2因为x1x2是方程2x^2-3x-1=0的两个根由韦达定理得:x1+x2=3/

已知,x1x2是方程2x²+4x-5=0的两根,求(2x1+1)(2x2+1)的值

x1x2是方程2x²+4x-5=0的两根x1+x2=-2,x1·x2=-2.5(2x1+1)(2x2+1)=4x1·x2+2x1+2x2+1=4(x1x2)+2(x1+x2)+1=-10-4

已知x1x2是方程2x^2-3x-1=0的两个实数根,x1除以x2+x2除以x1的值

已知x1、x2是方程2x^2-3x-1=0的两个实数根,则由韦达定理可得:x1+x2=3/2,x1*x2=-1/2那么:x1²+x2²=(x1+x2)²-2x1*x2=9

已知x1,x2是方程2x^2+3x-1=0的两根 不解方程求 2x1^2+x1x2-3x2

根据韦达定理x1+x2=-3/2x1·x2=-1/2由于x1是根,所以2x1^2=-3x1+1从而2x1^2+x1·x2-3x2=-3x1+1+x1·x2-3x2=1+x1·x2-3(x1+x2)=1

已知X1,X2 是方程-3X-4X+2=0的两根,求x1+x2=?x1x2=?

已知X1,X2是方程-3X²-4X+2=0的两根,求x1+x2=?x1x2=?此方程系数a=-3,b=-4,c=2由韦达定理可知x1+x2=-b/a=-4/3x1x2=c/a=-2/3

已知x1,x2是关于x方程x^2-ax+a^2-a+ (1/4)=0 的两个实根,那么(x1x2)/(x1+x2)的最小

因为x1x2=c/a,x1+x2=-b/a(其中,a=1,b=-a,c=a^2-a+(1/4)),则,x1x2/(x1+x2)=a-1+(1/4a)∵Δ=a²-4(a²-a+1/4

不等式:已知x1,x2是关于x方程x^2-ax+a^2-a+ (1/4)=0 的两个实根,那么(x1x2)/(x1+x2

因为x1,x2是关于x方程x^2-ax+a^2-a+(1/4)=0的两个实根,所以(1)△≥0,即a^2-4a^2+4a-1≥0,从而1≥a≥1/3(2)(x1x2)/(x1+x2)=a+1/4a-1

已知x1,x2是方程2x+3x-4=0的两个根,那么x1+x2= x1x2= x1+x2=

这是韦达定理x1+x2=-3/4x1x2=-2x1+x2=把根求出来才能得出记得采纳啊

已知x1x2是方程x-2x+a=0的两个实根,且x1+2x2=3-根号2,求x1,x2,a

题设方程a(x+3/2)^2+49=0,的两根,那么必定a<0,所以有了|x1-x2|=2根号(—49/a)的结果(2根号(—48/a)这里的48应该是49,题没抄错吧?)

若x1、x2是方程x^2+99x-1=0的两个实数根,则x1x2^2+x1^2x2-x1x2的值为

x1x2^2+x1^2x2-x1x2=x1x2(x1+x2-1)=-1(-99-1)=-1*(-100)=100

已知x1 x2是方程2x的平方+3x-1=0的两根,不解方程求:2x1²+x1x2-3x2²

x₁+x₂=-3/2、x₁x₂=-1/3、2x₁²+3x₁-1=02x₁²+x₁x&

已知X1,X2是方程X^-2X-5=0的解,求X1^+X1X2+X2^(^代表平方)

X1^+X1X2+X2^=(X1+X2)^-X1X2=2^+5=9再问:看不大懂,可以详细点么?再答:前面是一个形式上的转换,后面代入使用的韦达定理。再问:我们暂时还没有学“韦达定理”,所以··再答:

已知x1x2是关于x的方程x^2-kx+5(k-5)=0的两个正实数根,且满足2x1+x2=7,

分解因式(x-k+5)(x-5)=0x1=k-5,x2=5或x1=5,x2=k-5x1=k-5,x2=5时:2x1+x2=2k-10+5=7k=6x1=5,x2=k-5时:2x1+x2=10+k-5=

设x1x2是关于x的方程x^2+px+q=0的两个实数根,且x1^2+3x1x2+x2^2=1,

根据韦达定理x1+x2=-px1*x2=q而x1^2+3x1x2+x2^2=(x1+x2)^2+x1x2=1也就是p^2+q=1(x1+1/x1)+(x2+1/x2)=(x1+x2)+(1/x1+1/

x1x2是方程2X²-3X-8=0的两根,则X1+X2= ,X1X2= ,X1²+X2²=

x1x2是方程2X²-3X-8=0的两根,则X1+X2=3/2,X1X2=-4,X1²+X2²=(x1+x2)²-2x1x2=9/4+8=41/4,(X1-2)

韦达定理数学题已知X1X2是方程X平方加2X减2006=0的两根,求:|X1-X2|

x1*x2=-b/a=-2,x1+x2=c/a=-2006(x1+x2)^2=2006^2=(x1-x2)^2+4x1x2所以:(x1-x2)^2=2006^2-4x1x2=2006^2+8|X1-X