已知x1=2,x2=1都是函数y=alnx bx2 x的极值点,求a.b的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:55:33
(f(x1)+f(x2))/2-f((x1+x2)/2)=(2^x1+2^x2)/2-2^((x1+x2)/2)≥√(2^x1*2^x2)-2^((x1+x2)/2)(几何不等式)=0所以结论成立.
(1+x1)(1+x2)……(1+xn)>=2√(1*x1)*2√(1*x2)*……2√(1*xn)=2^n*√(x1*x2*x3……xn)=2^n*1=2^n
可以用求导的方法吗?再问:可以我高3再答:那就可以蛮干了。。f'(x)=(1-x)e^(-x),有f(x)极大值1,在(负无穷,1)递增,在(1,正无穷)递减,根据f(0)=f(正无穷)=0可以画草图
(f(x1)+f(x2))/2=(lgx1+lgx2)/2=log(x1*x2)^0.5f[(x1+x2)/2]=lg((x1+x2)/2)=lg(x1+x2)-lg2x1>0x2>0x1+x2>=2
设x2=x1f(0)=f(x1)-x1(2x-x1+1)f(x1)=1+x1(2x-x1+1)=1+x1(2X1-x1+1)=1+x1(x1+1)=x1^2+x1+1所以,f(x)=x^2+x+1
(1)∵f(x+2)是偶函数,故f(x+2)=f(-x-2)带入用x+2和-x-2分别替换x,因为是偶函数,则有f(x+2)=a(x+2)^2+b(x+2)+1=a(-x-2)^2-b(x+2)+1∴
(1)由f(x+2)为偶函数可得f(x)=ax2+bx+1的图象关于直线x=2对称,则−b2a=2,b=−4a,f(x)=ax2-4ax+1;对于任意的实数x1、x2(x1≠x2),都有f(x1)+f
依题意,即在定义域内,f(x)不是单调的.分情况市讨论:1)x再问:不正确再答:哦,对称轴写错了,更正如下:依题意,即在定义域内,f(x)不是单调的。分情况讨论:1)x
不等式左边=[2^x1+2^x2]/2>2根号(2^x1*2^x2)/2=根号2^(x1+x2){因为x1不等于x2,所以等号取不到}不等式右边=2^[(x1+x2)/2]=根号2^(x1+x2)得证
最直接的就是用Cauchy不等式得:(x2+x3+...+xn+x1)(x1^2/x2+x2^2/x3+...+x(n-1)^2/xn+xn^2/x1)≥(x1+x2+...+x(n-1)+xn)^2
证明:(1).不成立.f(x1+x2)=lg(x1+x2)≠lg(x1x2)(2).成立.f(x1x2)=lg(x1x2)=lg(x1)+lg(x2)=f(x1)+f(x2)(3).成立.∵f(x)是
不等式左边=[2^x1+2^x2]/2>2根号(2^x1*2^x2)/2=根号2^(x1+x2){因为x1不等于x2,所以等号取不到}不等式右边=2^[(x1+x2)/2]=根号2^(x1+x2)得证
证明:f'(x)=(1-x)e^(-x),当f'(x)=0时,有x=1.当x>1时,f'(x)<0;当x<1时,f'(x)>0.所以,在x=1时f(x)取得极大值和最大值.又当x趋近于+∞时,f(x)
令a=(1+x1)(1+x2)(1+x3)(1+x4)用x1x2x3x4=1替换里面的1a=(x1x2x3x4+x1)(x1x2x3x4+x2)(x1x2x3x4+x3)(x1x2x3x4+x4)=x
x1³+x2³=(x1+x2)(x1²-x1*x2+x2²)=(x1+x2)[(x1+x2)²-3x1*x2]=3×(3²-3×1)=3×6
由于f(x)=xe^(-x),x∈R所以x=f(x)/(e^x)由题意,可以设f(x1)=f(x2)=K所以:x1=f(x1)/(e^x1)=K/(e^x1)同理:x2=K/(e^x2)考虑到x1与x
1.∵X1,X2,…Xn都是正数,根据重要不等式1+x1≥√x11+x2≥√x2……1+xn≥√xn∴n个不等式左右相乘有(1+X1)(1+X2)…(1+Xn)≥2^n√x1√x2√xn=2^n√x1