已知x1 x2是关于x的方程 x 2 mx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:10:38
已知x1 x2是关于x的方程 x 2 mx
已知x1、x2是关于x的方程x²-ax+a²-a+1/4=0的两个实数根,那么(x1x2)/(x1+

由题意可知:Δ=(-a)²-4(a²-a+1/4)=4a-1≥0即得:a≥1/4由韦达定理有:x1+x2=a,x1*x2=a²-a+1/4那么:(x1x2)/(x1+x2

已知关于x的方程x²-2(k-1)x+k²=0有两个实数根x1 x2,且/x1+x2/=x1x2-1

x1+x2=2(k-1)x1*x2=k2|2k-1|=k2-12k-1≥0,2k-1=k2-1k=2,0舍去0,k=22k-1<0,1-2k=k2-1k2+2k-2=0k=1-√3

已知关于x的方程x的平方-x+m=0有两个实数根x1x2,且(x1-x2)小于1,求m的取值范围

由题意x1+x2=1,x1x2=m又|x1-x2|<1∴|x1-x2|^2<1∴(x1+x2)^2-4x1x2<1∴1-4m<1∴m>0又Δ=1-4m≥0,∴m≤1/4∴m的取值范围为(0,1/4]

已知x1x2是关于x的一元二次方程2x^-5x+2=0的实数根,求x1^x2+x1x2^和x2/x1+x1/x2

解1由题知x1+x2=5/2,x1x2=1故x1^2x2+x1x2^2=x1x2(x1+x2)=1×(5/2)=5/2由x2/x1+x1/x2=x2^2/x1x2+x1^2/x1x2=(x2^2+x1

已知x1x2是方程2x^2+3x-4=0的两个根,求x1^5·x2^2+x1^2·x2^5的值

x1+x2=-3/2x1*x2=-4/2=-2x1^5·x2^2+x1^2·x2^5=x1²x2²(x1³+x2³)=(x1x2)²(x1+x2)(x

已知x1x2是方程2x^2+3x-4=0的两个根 求x1^5*x2^2+x1^2*x2^5的值

x1+x2=-3/2x1x2=-4/2=-2x1^5*x2^2+x1^2*x2^5=(x1x2)^2*[x1^3+x2^3]=(x1x2)^2*(x1+x2)*[x1^2-x1x2+x2^2]=(x1

已知x1x2是方程2x^2-3x-1=0的两个实数根,x1除以x2+x2除以x1的值

已知x1、x2是方程2x^2-3x-1=0的两个实数根,则由韦达定理可得:x1+x2=3/2,x1*x2=-1/2那么:x1²+x2²=(x1+x2)²-2x1*x2=9

已知x1,x2是方程2x^2+3x-1=0的两根 不解方程求 2x1^2+x1x2-3x2

根据韦达定理x1+x2=-3/2x1·x2=-1/2由于x1是根,所以2x1^2=-3x1+1从而2x1^2+x1·x2-3x2=-3x1+1+x1·x2-3x2=1+x1·x2-3(x1+x2)=1

已知x1,x2是关于x方程x^2-ax+a^2-a+ (1/4)=0 的两个实根,那么(x1x2)/(x1+x2)的最小

因为x1x2=c/a,x1+x2=-b/a(其中,a=1,b=-a,c=a^2-a+(1/4)),则,x1x2/(x1+x2)=a-1+(1/4a)∵Δ=a²-4(a²-a+1/4

不等式:已知x1,x2是关于x方程x^2-ax+a^2-a+ (1/4)=0 的两个实根,那么(x1x2)/(x1+x2

因为x1,x2是关于x方程x^2-ax+a^2-a+(1/4)=0的两个实根,所以(1)△≥0,即a^2-4a^2+4a-1≥0,从而1≥a≥1/3(2)(x1x2)/(x1+x2)=a+1/4a-1

已知x1,x2是方程2x+3x-4=0的两个根,那么x1+x2= x1x2= x1+x2=

这是韦达定理x1+x2=-3/4x1x2=-2x1+x2=把根求出来才能得出记得采纳啊

已知x1 x2是方程2x的平方+3x-1=0的两根,不解方程求:2x1²+x1x2-3x2²

x₁+x₂=-3/2、x₁x₂=-1/3、2x₁²+3x₁-1=02x₁²+x₁x&

已知关于x的方程x^2+(m+2)+2m-1=0 (2)设x1x2是方程的两根,且(x1-2)(X2-2)=3,求m的值

告诉你思路吧.把那个(x1-2)(x2-3)=3拆开,用韦达定理,就是两根积是负a分之b的那种再问:详细一点再答:算了,那我告诉你好了,要给好评哦

已知x1 x2是方程3x²-5x-8=0的方程 求①x1三次方x x²+x1x2三次方

可以由十字相乘法分解因式为(3x-8)(x+1)=0,解得x1为-1,x2为8/3再问:完整可以吗

已知X1,X2是方程X^-2X-5=0的解,求X1^+X1X2+X2^(^代表平方)

X1^+X1X2+X2^=(X1+X2)^-X1X2=2^+5=9再问:看不大懂,可以详细点么?再答:前面是一个形式上的转换,后面代入使用的韦达定理。再问:我们暂时还没有学“韦达定理”,所以··再答:

已知x1x2是关于x的方程x^2-kx+5(k-5)=0的两个正实数根,且满足2x1+x2=7,

分解因式(x-k+5)(x-5)=0x1=k-5,x2=5或x1=5,x2=k-5x1=k-5,x2=5时:2x1+x2=2k-10+5=7k=6x1=5,x2=k-5时:2x1+x2=10+k-5=

X1 x2 是关于x 方程 x²-4x+k+1=0的两个实数根.试问,是否存在实数K.使得X1X2>x1+x2

现盘看判别式,delta=16-4(k+1)=12-4k,因为两个实根12-4k>=0,k4k>3所以不存在

设x1x2是关于x的方程x^2+px+q=0的两个实数根,且x1^2+3x1x2+x2^2=1,

根据韦达定理x1+x2=-px1*x2=q而x1^2+3x1x2+x2^2=(x1+x2)^2+x1x2=1也就是p^2+q=1(x1+1/x1)+(x2+1/x2)=(x1+x2)+(1/x1+1/

已知关于X的方程9^x-(4+a)3^x+4=0有两个实数解x1,x2,则(x1^2+x2^2)/x1x2的最小值是(

(x1^2+x2^2)/x1x2=x1/x2+x2/x1>=2(不等式里边的)当x1=x2时取最小值2下面我们只要证明x1可以等于x2即可记t=3^x,原方程变为t^2-(4+a)t+4=0;a=0时