已知x,y为正实数,且x y=1,求2 x 1 y的最小值多种解法
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:10:05
∵2x+4y-xy=0∴y=2x/(x-4)x+y=2x/(x-4)+x=2+8/(x-4)+(x-4)+4=6+8/(x-4)+(x-4)≥6+4√2当且仅当8/(x-4)=(x-4)时,等号成立∴
∵x^2+4y^2+xy=1,∴﹙x+2y﹚²=1+3xy1-xy=x^2+4y^2≥4xy∴x+2y=√﹙1+3xy﹚xy≤1/5∴x+2y≤√﹙1+3/5﹚=2√10/5再问: 为什么
4x²+4xy+y²+2x+y-6=0(2x+y)²+(2x+y)-6=0(2x+y+3)(2x+y-2)=02x+y+3=0或2x+y-2=0y=-2x-3或y=2-2
我只知道你为什么错2x+8y>=8倍根号xy只有当2x=8y的时候才能取等号,即x=4y,而后面又用x+y>=2倍根号xy,相同的道理只有x=y的时候才能取等号,前后矛盾了只能帮到你这么多了
若不限制X,Y的范围,则满足2X+8Y-XY=0的X+Y没有最小值.若限制X,Y>0,则满足2X+8Y-XY=0的X+Y最小值为18.整理2X+8Y-XY=0,可以得到(2-Y)(X+Y)+6Y+Y^
当x=y=1时f(x)=2/3当x≠y不妨设x
要证明的式子须是(x+1)/y1;若x>y,则(y+1)x
理论a+b≥2根号(axb)当且仅当根号a=根号b时有最小值计算自己算大概y=0.25x=3.75
有x,y大于0得2/y+8/x=1得x>8x+y=x+2/(1-8/x)=x+2+16/(x-8)=(x-8)+16/(x-8)+10>=2*根号[(x-8)*(16/(x-8))]+10=18既是当
x>0,y>0根据基本不等式:x+y≥2√(xy)∴xy-x-y=xy-(x+y)=1≤xy-2√(xy)∴xy-2√(xy)≥1xy-2√(xy)-1≥0令√(xy)=t(t≥0)解得:√(xy)≤
x+2y=11=x+2*y>=2*(x*2*y)^(1/2)4*(2*x*y)
4x/yz+y/xz+z/xy=2(x平方+y平方+z平方)/2xyz>=2(xy+yz+xz)/2xyz>=4xyz/xyz>=4
为了简便,设x+y=m,xy=n,依题意:n/2-m=6,即n=12+2m或m=n/2-6因为(a+b)^2>=4ab,即m^2>=4n.联立以上两式,分别消去其中一个得到:m^2>=4(12+2m)
30-xy=x+2y因为x>0,y>0则30-xy=x+2y>=2√(x*2y)=2√2*√(xy)xy+2√2*√(xy)-300a²+2√2a-30
xy+1=4x+y①∵x>0,y>0根据均值定理∴4x+y≥2√(4x*y)=4√(xy)②①②==>xy+1≥4√(xy)∴(xy)-4√(xy)+1≥0解得√(xy)≥2+√3或0
∵x,y为正实数,且x+4y=1,∴1≥24xy,化为xy≤116,当且仅当x=4y=12时取等号.则xy的最大值为116.故选:C.
设x,y均为正实数,且xy=x+y+8,则xy的最小值为?x>0,y>0,且xy=x+y+8xy=x+y+8≥2√xy+8xy-2√xy+8≥0(√xy+2)(√xy-4)≥0√xy≤-2====>x
以上省略4p²=2x³-x^4=x³(2-x)=(3·3·3)·(x/3)·(x/3)·(x/3)·(2-x)≤27·[(x/3+x/3+x/3+2-x)/4]^4(五元
3x*2y≤[(3X+2y)/2]²=36所以xy≤6{用a+b≥2根号(ab)的思想}
x>0,y>0根据基本不等式:x+y≥2√(xy)∴xy-x-y=xy-(x+y)=1≤xy-2√(xy)∴xy-2√(xy)≥1xy-2√(xy)-1≥0令√(xy)=t(t≥0)解得:√(xy)≤