已知sin(pai 4 a)=根号3 2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:53:06
因为sin(a+π/2)=cosa,所以sin(2π/3+a)=sin[π/2+(π/6+a)]=cos(π/6+a)由sin(π/6+a)=(根号3)/3>0,得cos(π/6+a)=(±根号6)/
sinθ+cosθ=根号2/2(sinθ+cosθ)²=1/21+2sinθcosθ=1/2sin2θ=-1/20
(1)由sin(π+α)=√3/2∴sinα=-√3/2,cosα=-1/2∴sin(3π/4-α)=sin3π/4cosα-cos3π/4sinα=(√2/2)×(-1/2)-(-√2/2)(-√3
由题意可得:f(x)=sin(2x+π/3)-√3sin^2x+sinxcosx+√3/2=sin(2x+π/3)-√3(1/2-1/2cos2x)+1/2sin2x+√3/2=2sin(2x+π/3
(sina-cosa)²=21-2sinacosa=2得:2sinacosa=-1则:(sina+cosa)²=1+2sinacosa=0所以,sina+cosa=0即:sina=
sinθ+cosθ=根号2/2,平方得1+2sinθcosθ=1/2,所以sin2θ=-1/2因为0
平方得1+sin2a=1/3sin2a=-2/3,2a在π到2π之间因为sina+cosa>0,所以a应该在π/2到3π/4之间.所以cos2a=-根号5/3
sinα+sinβ=m,两边平方,(sinα)^2+2sinαsinβ+(sinβ)^2=m^2,.(1)cosα+cosβ=√2,两边平方,(cosα)^2+2cosαcosβ+(cosβ)^2=2
f(x)=2√3sin²x-sin(2x-π/3)=√3-√3cos2x-1/2sin2x+√3/2cos2x=√3-(1/2sin2x+√3/2cos2x)=√3-sin(2x+π/3)T
通分即可1/1+sinα+1/1-sinα=(1-sinα)/[(1+sinα)(1-sinα)]+(1+sinα)/[(1-sinα)(1+cosα)]=(1-sinα)/(1-sin²α
由a范围则cos(a-π/4)>0sin²+cos²=1所以cos(a-π/4)=7√2/10cosa=cos(a-π/4+π/4)=cos(a-π/4)cosπ/4-sin(a-
sinθ+cosθ=√2/3sinθ=√2/3-cosθsin^2θ=2/9-2√2/3cosθ+cos^2θ1-cos^2θ=2/9-2√2/3cosθ+cos^2θ2cos^2θ-2√2/3cos
1+sinβ=(sinβ/2)^2+(cosβ/2)^2+2sinβ/2*cosβ/2=(sinβ/2+cosβ/2)^21-sinβ=(sinβ/2)^2+(cosβ/2)^2-2sinβ/2*co
sinα-cosα=-根号5/5π
1:(sinwx)^2+√3sinwxsin(wx+π\2)=(sinwx)^2+√3sinwxcoswx=2[(sinwx)^2+(√3\2)sin2wx]\2=[2(sinwx)^2+√3sin2
sin(α+派/3)+sinα=-4根号3/5sinacosπ/3+cosasinπ/3+sina=-4√3/53/2sina+√3/2cosa=-4√3/5√3/2sina+1/2cosa=-4/5
(sina+cosa)^2=1+2sinacosa=2/92sinacosa=-7/9sinacosa=-7/18sina+cosa=2^1/2/3sina,cosa是关于x^2-2^1/2/3x-7
(1)因为三角形ABC的周长为√2+1,所以a+b+c=√2+1,因为sinA+sinB=√2sinC,所以a+b=√2c,所以√2+1-c=√2c,所以c=1;(2)因为三角形面积=1/2absin
√3sina-cosa(用辅助角公式)=2sin(a-π/6)=2sin(a-π/6+π/2-π/2)=2sin(a+π/3-π/2)=-2sin[π/2-(a+π/3)]=-2cos(a+π/3)=