已知Rt△ABC中,∠ACB=90°,圆O是Rt△ABC的内切圆
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:02:44
∵CD⊥AB∴∠BCD=90°即∠B+∠BCD=90°∵∠ACB=90°∴∠A+∠B=90°∴∠A=∠BCD
∵在RT△ABC中,D为AB中点∴CD=BD=AD∴∠BCD=∠B∴tan∠BCD=tan∠B=1/3即AC/BC=1/3∴tan∠A=BC/AC=3cot∠A=1/3BC=3AC∴AB²=
分析:首先求得AE也是∠A的外角的平分线,根据平角的定义和角平分线的定义求得∠EAB,∠EBA的度数,最后根据三角形的内角和定理即可求得∠AEB.∵E是∠C的平分线与∠B的平分线的交点,∴E点到CB的
(1)∵∠ACB=∠DCA=90°,∠CAD=∠B,∴△ACB∽△DCA,∴ACDC=CBCA,∵AC=2,CB=4,∴DC=1,在Rt△ACD中,DC2+AC2=AD2,∴AD=5,答案为:AD的长
"AF平分叫CAB于E,交CB于F"一段应改为:AF平分CAB交CD于E,交BC于F.过F点作FM⊥AB于M,则FM‖CD∴∠BFM=∠GCD,∠BMF=∠GEC=90度∵CD垂直AB,垂足为D,∠A
简单,利用直角三角形两锐角互余就可以了,在Rt△ABC中,有∠A+∠B=90在Rt△CDB中,有∠DCB+∠B=90所以有∠A=∠DCB(等量代换)
你可能忙中大意了,应该说明点E在A、D之间.第二个问题:∵AC⊥BC、CD⊥AB,∴∠A=∠BCD [同是∠B的余角].又∠BCD=(1/3)∠ACB=(1/3)×90°=30°,∴∠A=30°,∴A
三角形内角和=180°∠A+∠B+∠ACB=180°∠DCB+∠B+∠CDB=180°∠ACB=∠CDB=90°所以∠A=∠DCB再问:在详细些~再答:由于三角形内角和=180°所以三角形ACB中∠A
设AD=X、CD=Y、BC=Z在Rt△ABC中,∠ACB=90°,CD⊥AB所以三角形ACD相似三角形CBD所以AD/CD=CD/BD所以CD平方=AD×BD即Y平方=9X(1)在三角形ACD和三角形
证明:∵∠ACB=90∴∠ACD=180-∠ACB=90∴∠ACB=∠ACD∵AC=BC,CD=CE∴△ACD≌△BCE(SAS)∴∠D=∠BEC又∵∠ACD=90∴∠DAC+∠D=90∵∠AEF=∠
Rt△ABC中,∠ACB=90°,M是AB边的中点所以AM=CM=BM∠CAB=∠ACM∠CAB=90-∠ABC∠BCH=90-∠ABC所以∠CAB=∠BCH所以∠BCH=∠ACM有CD平分,∠ACB
∵M是AB的中点,∠ACB=90°∴CM=AM∴∠A=∠ACM∵折叠∴∠ACM=∠DCM∵CD⊥AB∴∠A+∠ACM+∠DCM=90°∴3∠A=90°∴∠A=30°
本题存在问题,需补充条件:AC=BC.(即三角形ABC为等腰直角形三角形)(1)证明:作∠BCD=∠ACM,并且CD=CM,则:∠BCD+∠BCM=∠ACM+∠BCM=90°.又AC=CB,则:⊿BC
参考⑴BE+DE=2CF;∵∠AEB=∠ACB=90°∴A、E、B、C四点共圆∴∠BAC=∠BEC=45°=∠AEC连接CD∴⊿CEA≌⊿CED∴CD=CA=CB又点F为DB的中点∴CF⊥BD∴CF=
证明:在Rt△ACM中,CN⊥AM,∴∠CMN=∠AMC,∠MNC=∠MCA=90°∴△MNC∽△MCA,∴MN:MC=CM:MA,∴MC2=MN•MA,∵M是BC的中点∴BM=CM,∴B
证明:CD平分∠ACB,且DE⊥AC,DF⊥BC∴DE=DF①又∠ACB=90°,∠DEC=90°,∠DFC=90°∴四边形DECF是矩形②由①②四边形DECF是正方形.
(1)∵CD⊥AB,∴∠BDC=90°,∵∠DCB=30°,∴∠B=60°,在Rt△ACB中,∠ACB=90°,∴tan60°=ACBC=3,又BC=1,则AC=3;(2)在Rt△BDC中,tan∠B
cd=dm,∠mdb=2∠mcd=2∠b,∠b=∠mcd,所以mc=mb∠a+∠b=∠abc=90度,∠b=∠mcd,所以∠acm=∠cam所以am=mc,因为mc=mb,所以am=m
因为角ACB=90度所以sinB=BC/ABS三角形ABC的面积=1/2AC*BC=1/2*BC*AB*sinB因为AC*BC=1/4AB^2所以1/4AB^2=BC*sinBsin*B*(BC/AB