已知Rt△ABC,周长为L

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:12:23
已知Rt△ABC,周长为L
已知rt△abc中,∠c=90°,tanb=12/5,且它的周长为60,则此rt三角形abc的面积是

设三角形a对应的边为x,b对应的边为y,c对应的边为z,则y/x=12/5x²+y²=z²x+y+z=60解得x=10,y=24,z=26面积为:1/2xy=120

已知,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a,b,c,设△ABC的面积为S,周长为L

a²+b²=c²,(a+b)²-2ab=(m+c)²-2ab=c²,ab=[(m+c)²-c²]/2=(m²+

在Rt△ABC中,角C=90度.已知Rt△ABC的周长为2+根号6,斜边为2,求此三角形的面积.

设AC=X,则BC=根号6-X由勾股得X²+(根号6-X)²=2²X1=(根号6-根号2)/2,X2=(根号6+根号2)/2面积=1/2(根号6-根号2)/2*(根号6+

在Rt△ABC中,∠C=90°,已知△ABC的内切圆半径为1厘米,△ABC的周长为L,面积为S,(1)试确定L和S的关系

1)设三边分别为a,b,c,r为内切圆半径=1,则△ABC的面积=(ar+br+cr)/2=(a+b+c)/2=L/2=S所以L=2S2)设两直角边为a、b,斜边为c,则ab/2=60;又a^2+b^

已知△ABC的周长为2

由题意及正弦定理,得AB+BC+AC=2+1.BC+AC=2AB,两式相减,可得AB=1.

已知Rt△ABC的周长是4+42

∵Rt△ABC的周长是4+42,斜边上的中线长是2,∴斜边长为4,设两个直角边的长为x,y,则x+y=42,x2+y2=16,解得:xy=8,∴S△ABC=12xy=4.

已知Rt△ABC周长为2+根号2,求其面积的最值,及此时的各边长

不妨设C为直角周长L=a+b+c=c*sinA+c*cosA+c=c(sinA+cosA+1)=c(2^(1/2)sin(A+(pi/4))+1)c=L/(2^(1/2)sin(A+(pi/4))+1

已知Rt△ABC中,∠C=90°,周长为36,直角边AC=12,求Rt△ABC的面积.

∵AC+BC+AB=36,AC=12,∴BC+AB=24,于是BC=24-AB.在Rt△ABC中,AB2=AC2+BC2,得AB2=122+(24-AB)2,从而AB=15,BC=24-AB=9.因此

已知Rt△ABC周长为l,求△ABC面积的最大值

设Rt△ABC三边为:直角边x,y,斜边z,则有x+y+z=1,x²+y²=z²上述两方程联立消去z并整理可得到1+2xy=2x+2y………………①因为三角形面积S=1/

已知,如图所示,Rt△ABC的周长为4+23,斜边AB的长为23,求Rt△ABC的面积.

∵Rt△ABC的周长为4+23,斜边AB的长为23,∴AC+BC=4;又由勾股定理知,AC2+BC2=AB2,∴AC•BC=(AC+BC)22=(AC+BC)2−(AC2+BC2)2=2,∴SRt△A

已知Rt△ABC的周长为2+根号6,斜边中线长为1,求△ABC的面积

因为Rt△ABC的周长为2+根号6,斜边中线长为1,知斜边长为2,所以两直角边长度总和为根号6设两直角边为a,b则a+b=根号6所以(a+b)^2=a^2+b^2+2ab=6,y又a^2+b^2=4,

RT三角形的周长为正值L,求三角形ABC面积的最大值(用均值不等式)

RT三角形的周长为正值L所以a+b+c=L其中c为斜边勾股定理a^2+b^2=c^2面积S=0.5*a*b要想使S最大,也就是a*b最大.a^2+b^2>=2ab,当a=b时,ab取最大值,即ab=(

急 已知如图△abc的周长为L,面积为S,内切圆圆心为O,半径为r,求证r=2s/L

1.边O与三个切点,O与三个顶点A,B,C形成三个三角形OAB,OACOBC他们的高都是rS=SOAB+SOAC+SOBCS=1/2(AB*r)+1/2(AC*r)+1/2(BC*r)r=2s/lr=

已知Rt△ABC周长为4+4根号3,斜边的中线是2,求△ABC面积

Rt△ABC的三边分别为a,b,ca+b+c=4+4√3斜边c=2*2=4a+b=4√3①a²+b²=c²=16②①²-②2ab=32ab=16△ABC面积=a

已知Rt△ABC的面积是4,则三角形的周长的最小值为

设Rt△ABC的直角边分别为a,b相当于已知(ab)/2=4,求a+b+√(a²+b²)的最小值a+b+√(a2+b2)≥2√ab+√(2ab)=4√2+4

已知Rt△ABC的周长为6+2根号3,斜边上的中线长2,则S△ABC=_____

因为斜边上的中线长2,所以斜边长4所以两直角边和为2+2根号3设一条为X一条为y所以x+y=2+2根号3x,y平方和为4所以(x+y)^2-(x^2+y^2)=2xy(2+2根号3)^2-4=2xyx

已知Rt三角形ABC,斜边长为2,周长为 2+根号六,求面积

设直角边长为x,yx^2+y^2=4x+y=根6解得xy=1所以面积为xy/2=1/2

如图,已知等腰Rt△ABC的直角边长为l,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的

∵△ABC是边长为1的等腰直角三角形,∴S△ABC=12×1×1=12=21-2;AC=12+12=2,AD=(2)2+(2)2=2…,∴S△ACD=12×2×2=1=22-2;S△ADE=12×2×