已知p是正方形abcd对角线bd上一点,点e在ad的延长线上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:52:41
1AB1‖DC1,AD1‖BC1∴面AB1D1‖面BDC1.OC1∈面BDC1.∴.C1O‖面AB1D12,设P为ABB1A1中心.∴CB⊥ABB1A1.∴AB1⊥BC.又AB1⊥A1B.∴AB1⊥面
由题意:四边形BFPE是矩形,所以其两对角线PB=EF∵正方形ABCD的两顶点B、D是关于其对角线AC成对称,所以PB=PD∴EF=PD
遇到这类问题,把图画标准一点,思路就比较容易出来.这个题目的关键是在“BP垂直PQ,垂足为P”这句话上面抓住这个构造直角三角形BPQ,利用勾股定理设方程求出正方形边长即可.在RT三角形BPQ中BP的平
四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角.以上性质可以根据圆周角等于它所对弧的度数的一半进行证明.此
1、过P作AB、BC垂线,足分别为HI,则HPIB为正方形,PH=PI,又∵∠EPF=∠HPI=RT∠,∴∠EPH=∠FPI,∴△PEH≌△PFI,∴PE=PF2、由第1小题可知△PEF为等边直角△,
∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=12(180°-45°)=67.5°,∴∠ACP度数是67.5°-45°=22.5°.
连cp可用全等证明cp=apcp又=ef所以ap=ef再问:CP为什么等于EF再答:pecf是矩形,对角线相等再问:终于明白了
证明:(1)∵四边形ABCD是正方形,∴AB=CB,∠ABD=∠CBD=12∠ABC,在△ABP和△CBP中,AB=CB∠ABP=∠CBPBP=BP,∴△ABP≌△CBP(SAS);(2)∵△ABP≌
(1)证明:设CD与PE相交于O因为四边形ABCD是正方形所以CD=CB角DCP=角BCP角BCD=90度因为CP=CP所以三角形DCP和三角形BCP全等(SAS)所以角PDC=角PBC因为PB=PE
第一问楼主会了,我就不写了.第二问:作PQ⊥AD于Q,所以PFDQ是矩形DF=PQ=sin∠PAQ*PA=sin45°*PA=√2/2*PA由第一问结论知DF=EF所以EF=√2/2*PACF=sin
(1)作PE垂直AC于E.显然,AC=根号2,AQ=2X,BP=X,PC=1-X.角ACB=45度,所以,PE=CE=(根号2)/2PC=(根号2)/2(1-X).所以,y=1/2*AQ*PE=-(根
①求证:∠PDE=∠PED;证明:∵四边形ABCD是正方形∴AB=ADAC平分∠BAD和∠BCDAC⊥BD∴∠BAC=∠DAC=∠ACD=∠CDB=45°又∵AP是公共边∴△BAP≌△DAP∴BP=D
解题思路:根据正方形的性质求解解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/re
以A为坐标原点,以AB为X轴正方向,以AD为Y轴正方向建立直角坐标系,则A(0,0),B(2,0),C(2,2),D(0,2),∵P点有对角线AC上,设P(x,x),0<x<2所以.AP=(x,x),
拜托哪里来的F
1.已知正方形ABCD中,对角线AC=10CM,点P是AB边上的点,则点P到AC,BD的距离之和为__5倍根号2___.2.在矩形ABCD中,对角线AC,BD相交于点O,若角AOD=120度,AB=4
连接PD①∵AB=ADAP=AP∠BAP=∠DAP=45°∴△APB≌△APD∴∠ABP=∠ADP∠PBC=∠PDF∵PE⊥PB∴在四边形BCEP中∠PBC+∠PEC=180°∵∠PEF+∠PEC=1
从P点作PQ⊥BD,QE⊥AD,根据三垂线定理,PE⊥AD,cos∠PDA=cos∠PDB*cos∠BDA.cos∠60=cos∠PDB*cos∠45,cos∠PDB=√2/2,∠PDB=45PQ‖C
题目显然有问题.DF怎么可能与CF垂直呢? F点在CD上面.应是CF=DF吧.(1)如图,连接PD,作PG⊥BC于G.1.易证明PF=PG,∠BPG=∠EPF.因此,三角形BPG与EPF全等
连接PC,∵PE⊥DC,PF⊥BC,ABCD是正方形,∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=P