已知p是圆o x2 y2=4上的动点 过p作x轴的垂线 垂足为Q
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 01:49:17
圆x^2+y^2-4x-4y+4=0即(x-2)^2+(y-2)^2=4圆心C(2,2),半径r=2设P(m,n),M(x,y),又A(10,0)P在圆上,则(m-2)^2+(n-2)^2=4(#)因
1.设圆心(x0,y0)与直线l相切,于(x0,-2).与F连接作中垂线,可解方程为y0=(x0+2)x/2-x0^2.与x=x0交于(x0,-x0^2/2+x0),圆心轨迹方程为y=-x^2/2+x
x^2+(y-1)^2=1所以可以设x=sina,y=1+cosa所以2x+y=2sina+1+cosa=√5*sin(a+b)+1其中b满足cosb=2/√5,sinb=1/√5因为-1
P(m,n)在圆上则M点(x,y)对应的关系式是x=(m+2)/2,y=(n+6)/2所以m=2x-2,n=2y-6(2x-2)^2+(2y-6)^2-4(2x-2)=0
P(a,b)Q(4,0)所以M[(a+4)/2,b/2]则x=(a+4)/2,y=b/2a=2x-4,b=2yP在圆上a^2+b^2=4(2x-4)^2+4y^2=4(x-2)^2+y^2=1
点P的横坐标为1或-1,或者P的纵坐标为1时相切
x^2+y^2-6x-4y+12=0(x-3)^2+(y-2)^2=1令x-3=cosa,y-2=sinax+y=5+cosa+sina=5+√2sin(a+π/4)x+y最大值5+√2,最小值5-√
设M点坐标为(x,y)则因为M是PQ中点,所以可得P的坐标为(2x,2y-4)因为P在圆上,所以吧P点坐标代入圆的方程,即(2x)^2+(2y-4)^2=8整理得到,x^2+(y-2)^2=2这就是M
设P点坐标为(x,y),则P点与原点连线的中点M的坐标为((x-0)/2,(y-0)/2)=(x/2,y/2)y^2=4x,则x=y^2/4x/2=y^2/8=(y/2)^2/2(y/2)^2=2*x
设E(x,y),P(x0,y0),D(0,y0)则向量DE=(x,y-y0),向量DP=(x0,0)∵向量DE=4倍向量DP∴x0=x/4,y=y0∵点P是单位圆上的动点∴x²/16+y
圆Q的圆心O坐标为(0,2),半径r=1/2,|PQ|最小时,即|OQ|最小,设Q坐标为(m,n),则m^2-4n^2=4|OQ|^2=(m-0)^2+(n-2)^2=4+4n^2+n^2-4n+4=
抛物线y^2=2x的焦点为F(1/2,0)./PA/+/PM/=/PA/+d-1/2=/PA/+/PF/-1/2.当A、P、F三点共线时,/PA/+/PF/最小.直线AF的斜率为:k=4/(3.5-0
设OP,OQ夹角为θ,则向量OP在向量OQ上的投影等于|OP|cosθ,若取得最大值则首先θ为锐角.设P(x,y),不妨取Q(1,1),则根据向量数量积的运算得出|OP|cosθ=OP•OQ|OQ|=
点P在直线y=x上 点到圆上一点的距离,最小和最大都在点与圆心的连线上,靠近点P的为最近点,圆心另一端的为最远点. 因此,当PN最大而PM最小时,|pn| -
设M坐标是(x,y),则P坐标是(-x,8-y)P在圆上,则代入得:(-x)^2+(8-y)^2=8即方程是:x^2+(y-8)^2=8
抛物线y=x²/4的焦点F坐标为(0,1)设P(x,y)为抛物线一点,y=x²/4则线段PF中点坐标(X1,Y1)为X1=x/2,Y1=(y+1)/2得Y1=(x²/4+
设中点M的坐标是M(x,y)因为M是P点与Q点的中点,所以P点的坐标(2x-4,2y)P点在y=x²上,所以:2y=(2x-4)²=4x²-16x+16中点M的轨迹方程是
由参数法,可设设P点的坐标为P=(2cost,2sint),从而由中点坐标公式得到,M点的坐标为(x,y)=(6+cost,sint),从而M点的轨迹为(x-6)^2+y^2=1.是一个圆.
1、过点P垂直于切线的方程是Y=(根号3)X.则所求的切线的斜率为(-根号3)分之1,并且过点P.代入方程就可以求出来了.2..第二题不做了,估计三年了姐姐也做不出来了,而且手上没有纸笔.把每个条件都
【分析】p到y=x距离最近时,p处的切线与y=x平行【解】设P(x0,y0)y'=e^x当x=x0时.k=y’=1即e^x0=1x0=0y0=1∴p(0,1)