已知p为△abc所在平面内一点 且满足ap=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:46:51
由题意得,(PB−PA)+(PC−PA)=−λPA;∴(λ−2)PA+PB+PC=0∴λ=3.故答案为:3.
a^2(当P点为正三角形中心)
1)做P点在△ABC所在平面内的射影P'点,连接P'A、P'B、P'CPP'⊥面ABC,又PA=PB=PC由三垂线定理可得P'A=P'B=P'C点P在△ABC所在平面内的射影P'是△ABC的外心.2)
①:由 PA+PB+PC=0 可得:P点为三角形ABC的重心②:由 PA·PB=PB·PC=PC·PA =>PA·PB-PB·PC= 
只OP垂直面ABC不能证明面PAC垂直面ABC啊回答:\x0d过一条垂线上的任意面垂直那个面,面PBC是垂线上的一个面,就垂直那个面了,我用的反证法,有个定理给你说,三角形斜边的中点到三顶点的距离相等
过P作PO垂直平面ABC于O,则PA,PB,PC在平面ABC上的射影分别为OA,OB,OC,因为PA=PB=PC,所以OA=OB=OC(也可由直角三角形PAO,PBO,PCO全等得到),即O为三角形A
因为PA+PB+2PC=CB,所以PA=CB-PB-2PC=CB+BP+2CP=CP+2CP=3CP,因此,P在直线AC上.选D.
如图所示,若点P三角形的内部,则PA+PB=PM与PC的方向相反,不符合题意;若点点P三角形的边上时也不符合题意.因此点P位于△ABC的外部.故选:D.
证明:∵PA⊥ABC∴平面PAC⊥平面ABC,且两平面交线为AC又∵平面PAC⊥平面PBC,且平面平面PBC与平面ABC的交线为BC∴BC⊥平面PAC∵AC在平面PAC上∴BC⊥AC
这样吧,设A在(0,0),B在(a,0),C在x轴上方令AB=a,AC=b,|AP|=l,角BCA=角A,于是有向量AC=b(cosA+i*sinA)于是l=1/5*AB+2/5*AC=1/5*a+2
分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.每条垂直平分线上得3个交点,再加三角形的垂心,一共10个
设A(xa,ya),B(xb,yb),C(xc,yc),P(xp,yp)|PA|^2+|PB|^2+|PC|^2=(xa-xp)^2+(ya-yp)^2+(xb-xp)^2+(yb-yp)^2+(xc
证明:取AC,BC的中点D,E,连结PD,PE,DE.显然DE为△ABC的中位线,∴DE‖AB.∵AB⊥BC,∴DE⊥BC.∵PB=PC,E为BC中点,∴PE⊥BC,∴BC⊥平面PDE,∴BC⊥PD.
(1)思路:欲证明PC⊥平面ABD,即证明PC⊥AD PC⊥BD 即可 在△ACP中,AC=AP AD 
由PA+BP+CP=0,变形得PA=PB+PC由向量加法的平行四边形法则知,PA必为以PB,PC为邻边的平行四边形的对角线,又D是BC的中点,故P,D,A三点共线,且D是PA的中点又|AP||PD|=
(1)向量AP+2向量BP+3向量CP=向量0.根据向量的减法可知:向量AP+2向量(AP-AB)+3向量(AP-AC)=向量0.即6AP-2AB-3AC=0,向量AP=1/3AB+1/2AC=1/3
在同一平面内满足(向量OB-向量OC)*(向量OB+向量OC-2向量OA)=0的条件有两个1、向量OB-向量OC=02、向量OB+向量OC-2向量OA=0条件1、向量OB-向量OC=向量CB=0则C和
A.延长AD,到E使OD=DE.那么向量OB+OC=OE=AD=2AO.要说明的话,因为2OA=-(OB+OC),并OB+OC过点D.所以A,O,D共线.
点P位于边AC上且PC=2PA因为由题中的向量的等量关系可以推出:向量AP=向量PA+向量PC而又由这个等量关系可以得出点APC三点共线(高中数学的一个重要定理),再由相反向量的等量关系就可以得出结论
1.中心此为正三角形2.垂心PA⊥BC,则OA⊥BC,OA是BC的高3.内心O到3边距离相等,O为内接圆圆心4.重心这个解释起来太麻烦了,你可以理解为O点是支撑起三角形的最佳力点,证明你还是回去问问老