已知PA是切线,切点为AAB=6,正切角P=四分之三,求圆的半径
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:09:37
(1)连接OC,因为OA等于OC,角BAC等于30度所以角ACO=角BAC=30度所以角AOC=180°-30°-30°=120°又因为,PA、PB是圆O的切线所以PA⊥AD,PC⊥OC,所以角PAO
由切线长定理:PA的平方=PD*PE4*4=2*PE所以:PE=8PE=PD+2R8=2+2R所以:R=3
∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=
依题意:EA=EQ,FB=FQ,PA=PB=10∴C△PEF=PE+PF+EF=PE+PF+EQ+FQ=PE+PF+EA+FB=PA+PB=20连结AO、QO、BO易得:△AOE≌△QOE,△BOF≌
证明:连AC,AB,AO,延长AO交圆O于D点可有DA垂直于PA,角DBA=90°得:角ADB=角PAB即:角ACP=角PAB角P=角P三角形ACP相似于三角形BAPAP^2=CP*BP
(1)连接PO,交AB与点D,由于PA,PB是圆O的切线,则,PA⊥AC,PB⊥BO,AO=BO,PO为公共边;△PAO≌△PBO,PO⊥AB,在RT△PDA中,由AB=6,PA=5,勾股定理的,PD
解;连接OA,OB,∵PA、PB是⊙O的切线,A、B是切点,∴OA⊥AP,OB⊥PB∵OP=OP,OA=OB,∴Rt⊿PAO≌Rt⊿PBO∴∠APO=∠BPO,AP=BP∴PO⊥AB.∵OP交AB于C
证明:△AOP≌△BOP∴PA=PB△AOP≌△CAP∴PA/PC=PO/PA∴PA^2=PC*PO∴PA^2=PB^2=PC*PO
切割线定理.分析:根据已知得到PC的长,再根据切割线定理即可求得PA的长.∵PB=2cm,BC=8cm,∴PC=10cm,∵PA2=PB•PC=20,∴PA=2根号5,此题主要是运用了切割
连接OA,因为PA,PB是圆O的切线故
先连A和圆心O,题目没说PBC是在什么位置直接画成平行AO的,连接AB·OC,容易证OC平行AB,则OABC是平行四边形,所以OC=AB角OAB是60度PAB30度PA/PB就是根号3
连接OB,则OB⊥PB,在Rt△POB中,OB=OA=PO-AP=3,PO=5,∴PB=PO2-OB2=52-32=4.
∵PB=2cm,BC=8cm,∴PC=10cm,∵PA2=PB•PC=20,∴PA=25,故选D.
讲下思路:设p(m,-1),再设抛物线任意点(n,n^2\4),这样可求n点的切线方程,只含xyn的,过P点,将p代入切线方程,含mn,求出两关系(用一者表示另一者),应该有两种,即为AB点关于p点的
△PDE周长pd+pe+de=pd+da+pe+eb=10da+eb=dbl连接oaob可知aob=130连接o和de切点可知doe=1/2aob=65
设po=x,则AP=BP=根号(x^2-1),sinAPO=1/x.cosAPB=1-2sinAPO^2向量PA*向量PB=(x^2-1)cosAPB,求导求最值即可
/>∵PA、PB切圆O于A、B∴PB=PA=6∵CD切圆O于E∴CE=AC,DE=BD∴CD=CE+DE=AC+BD∴△PCD的周长=PC+CD+PD=PC+AC+BD+PD=PA+PB=12(cm)
(1)连接PO,OB,设PO交AB于D.∵PA,PB是⊙O的切线,∴∠PAO=∠PBO=90°,PA=PB,∠APO=∠BPO.∴AD=BD=3,PO⊥AB.∴PD=52−32=4.在Rt△PAD和R
证明:连接OA,OB,OP. 点B在圆心O上,且PA=PB;