已知p(8,a)在抛物线y2=4px上,且
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:12:41
设点B的坐标(X,Y),点P的坐标为(x,y),则x=X+12×31+12=2X+33,y=Y+12×11+12=2Y+13∴X=32(x−1),(1)Y=12(3y−1),(2)∵点B在抛物线上,∴
解题思路:考查了抛物线的方程的求法,以及抛物线的性质,直线与抛物线的位置关系的应用解题过程:
由y=2x−4y2=4x得:4x2-20x+16=0,即x2-5x+4=0,所以A(4,4)、B(1,-2).故|AB|=35.…(4分)设点P(t2,2t)(-1<t<2),则P到直线l的距离为:d
由题意,y2=-8x的准线方程为:x=2双曲线x28−y22=1的两条渐近线方程为:y=±12x由题意,三角形平面区域的边界为x=2,y=±12x z=2x-y即y=2x-z,则z=2x-y
我们之间拥有的这个惟一的世界里哈哈.我看见目光在男人们和女人们中间交换,嘴唇到躯体,而当我们分开,我想我被空中的一片高声恸哭
互补说明两个倾斜角相加等于180°(两直线与x轴的成角),也就是说两个倾斜锐角相等,所以两条直线的斜率的绝对值相等.设中点为(x0,y0),则y0=(y1+y2)/2,x0=(x1+x2)/2.y1&
(1)kPA=y1-2/x1-1=y1-2/(y1^2/4-1)=4(y1-2)/(y1^2-4)=4/(y1+2)kPB=y2-2/x2-1=y2-2/(y2^2/4-1)=4(y2-2)/(y2^
由题意,PA与PB斜率之和=0设PA:y-y0=k(x-x0),PB:y-y0=-k(x-x0),分别和抛物线联立则y1=2p/k-y0;y2=-2p/k-y0故y1+y2=-2y0,即(y1+y2)
由A、B是抛物线y2=2px(p>0)的两点,|AO|=|BO|,及抛物线的对称性知,A、B关于x轴对称.设直线AB的方程是x=m,则 A(m,2pm)、B(m,-2pm),设AB与x轴的交
由题意得F(12,0),准线方程为x=-12,设点P到准线的距离为d=|PM|,则由抛物线的定义得|PA|+|PF|=|PA|+|PM|,故当P、A、M三点共线时,|PA|+|PF|取得最小值为|AM
(1)圆C:(x-3)2+y2=5与抛物线y2=2px方程联立,可得:(x-3)2+2px=5,即x2+(2p-6)x+4=0,∵圆C:(x-3)2+y2=5与抛物线y2=2px(p>0)在x轴上方交
x^2=2*4y,p=4,焦点坐标F(0,2),找出A点关于Y轴的对称点为B(2,4),连结BF,交抛物线于P,取第二象限交点,即为所求,直线BF方程为:(y-2)/(x-0)=(4-2)/(2-0)
(1)作AM垂直于准线于M,与抛物线交于点P,则AP+PF的绝对值(F为C的焦点)有最小值P(x,2)4x=4x=1P(1,2)最小值为:3+1=4(2)连结FB,与抛物线交于点Q,则QF-QB的绝对
F(-2,0),AF=4,点A到准线的距离=4所以点A的横坐标为-2,纵坐标为±4O点关于准线的对称点B坐标为(4,0)FO=2,OB=4当A,P,B三点共线时,pa+po的最小值,最小值为ABAB=
由题意得F(2,0),准线方程为x=-2,设点M到准线的距离为d=|PM|,则由抛物线的定义得|MA|+|MF|=|MA|+|PM|,故当P、A、M三点共线时,|MF|+|MA|取得最小值为|AP|=
答:抛物线y^2=2x=2px,p=1焦点F(1/2,0),准线x=-1/2d1+d2=PA+PN=PA+PF>=AFAF^2=(3-1/2)^2+(10/3-0)^2=625/36AF=25/
1、因为A,B关于M(2,2)对称,所以,AB中点为M(2,2)则可设AB:x=m(y-2)+2,A(x1,y1),B(x2,y2)(显然直线斜率存在且不为0,斜率不存在的话,弦的中点肯定在x轴上;斜
设A(x1,y1),B(x2,y2)联立:y^2=2px与y=x-1,消去y,得到:x^2-(2+2p)x+1=0则x1+x2=2+2p,y1+y2=x1-1+x2-1=x1+x2-2=2p,则A,B
(3,2根号6)或者(3,-2根号6)
设点N的坐标为(x',y'),则y’²=2px’.|MN|=√[(x'-a)²+y'²]=√[(x-a)²+2px']=√[x'²+(2p-2a)x’