已知P(0,5)及圆c:x² y² 4x-12y 24
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 20:57:00
x^+y^+4x-12y+24=0是以O(-2,6)为圆心,4为半径的圆.PO^=5
1.所求中点(x,y)、p点、圆心(-2,6)三点构成直角三角形用勾股定理:得x^2+(y-5)^2+(x+2)^2+(y-6)^2=(2-0)^2+(6-5)^2x^2+y^2-11y+2x+30=
圆C:x²+y²-6x+4y+4=0(x-3)²+(y+2)²=9所以半径为3过P点直线被圆所截得弦长为MN=4过C作CQ⊥MN则QM=QN=2则CQ=根号下9
因为直线经过点P(2,0),可设直线方程为y=k(x-2),即kx-y-2k=0圆C的方程可以变形为(x-3)²+(y+2)²=9圆心坐标为C(3,-2)所以,圆心到直线的距离为d
1、圆C圆心为(3,-2),半径为3.当直线L斜率不存在时,L为x=2,符合条件.当直线L斜率存在时,设为y=kx+b.0=2k+b且|3k+2+b|/根号下k^2+1=1得直线L为y=-3/4x+3
C(4,1)最长弦是直径,即直线PC,那么最短弦就是和PC垂直的弦K(PC)=-1/2,则最短弦的斜率k=2所以,最短弦所在的直线方程为:2x-y+3=0再问:为什么最短弦就是和PC垂直的弦呢?我不太
圆心C(-2,6).设弦的中点为M(x,y)易证CM垂直于PM,故M在以CP为直径的圆周上圆心为线段CP中点(-1,5.5),半径为|CP|/2=(根号5)/2圆的方程为(x+1)^2+(y-5.5)
(x-1)^2+(y-2)^2=5圆心为(1,5)设之间为Ax+By-4=0(考虑到k可能不存在的可能)则点到直线距离为:d=|A+5B|/√(A^2+B^2)=1(A+5B)^2=A^2+B^210
将圆C方程化为标准方程得:(x+2)2+(y-6)2=16,∴圆心C坐标为(-2,6),半径r=4,如图所示,|AB|=43,取AB的中点D,连接CD,可得CD⊥AB,连接AC、BC,∴|AD|=12
http://zhidao.baidu.com/question/28580865.html?an=0&si=1
圆C的方程化为标准形式为(x+2)²+(y-6)²=16C点坐标为(-2,6),圆C的半径为4将P(0,5)代入圆C的方程可以得到5
圆C:x^2+y^2+4x-12y+24=0即圆C:(x+2)^2+(y-6)^2=4^2因(0+2)^2+(5-6)^2=5
所求中点(x,y)、p点、圆心(-2,6)三点构成直角三角形用勾股定理:得x^2+(y-5)^2+(x+2)^2+(y-6)^2=(2-0)^2+(6-5)^2x^2+y^2-11y+2x+30=0(
(1)圆C:x2+y2-6x+4y+4=0,化为(x-3)2+(y+2)2=9,圆心C(3,-2),半径R=3.圆Ex2+y2+2x-2y+m=0化为(x+1)2+(y-1)2=2-m,圆心E(-1,
圆C:(x-3)^2+(y+2)^2=13,圆心(3,-2)1)当直线L的方程为x=3时,满足题意要求2)设斜率ky=kx+b,过P(4,0)0=4k+b,b=-4ky=kx-4k,[3*k+(-2)
∵圆C:x^2+y^2+4x-12y+24=0∴圆心为(-2,6)半径r=4设l:y-5=k(x-0)∴2=│-2k-1│/√(k²+1)k=4/3l:4x-3y+15=0
再问:好像和答案不对吖?再答:额,是么,我得出的结果是这个耶。再问:答案是x2+y2+2x-11y+30=0再答:哦,是的。上面答案错了。应该是:若B为弦中点,那么就有BC垂直BP,C的坐标为(-2,
圆C:x²+y²-6x+4y+4=0,(x-3)²+(y+2)²=9,圆心C的坐标为(3,-2),半径为3.∵过点P(2,0)的直线L被圆截得的线段MN的长度为
圆C:x2+y2-8x-2y+12=0,即(x-4)2+(y-1)2=5,表示以C(4,1)为圆心,半径等于5的圆.由于|PC|=(4−0)2+(1−3)2=25>5(半径),故点P在圆外,故当弦所在
1、x2+y2+4x-12y+24=0,变成:(x+2)^2+(y-6)^2=4^2,圆心C(-2,6),设直线方程为:(y-5)/x=k,y=kx+5,圆心C至直线距离d=|-2k-6+5|/√(1