已知O是平面四边形ABCD内任意一点(不在边上),用反证法证明:四个平面向量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 16:03:00
36÷4=9(厘米)9²=81(平方厘米)答:四边形ABCD的面积是81平方厘米.
因为OA向量减OB向量等于BA向量OC向量减OD向量等于DC向量而BA向量等于DC向量所以OA向量减OB向量等于OC向量减OD向量,即OA向量+OC向量=OB向量+OD向量祝楼主身体健康万事如意望采纳
首先要限定四边形ABCD在同一个平面上,不是空间四边形.这题可以用反证法证明.投影的基本属性是:1)原来平行的直线的投影依旧是平行的.2)平面上两条不同的直线,投影也是不同的.从题目可知A1B1//C
设x秒后△OBD面积为QBCD的A(-3+x,1),B(-3+x,3),C(2+x,3),D(2+x,1)连OA,则S△OBD=S△OBA+S△OAD+S△ABD=×2(x-3)+×5×1+×2×5=
对于正方形“内接于”圆,说明是在圆的内部,“外切于”圆,说明是在圆的外部;对于圆“内切于”正方形,说明在正方形内部;“外接于”正方形,说明在正方形外部.四边形内接于圆,等同于,圆外接于四边形,圆内切于
思路:先取特殊点推出四边形为矩形,再验证对于矩形,该平面内任一点P满足AP^2+CP^2=BP^2+DP^2不妨取P为AB的中点,则由AP^2+CP^2=BP^2+DP^2可得PC=PD,设CD的中点
连OA、OB、OC、OD,将四边形ABCD分成四个小三角形,则四边形的面积等于这四个三角形的面积之和.S=(1/2)×4×(AB+BC+CD+DA)=72(cm²)
连接O和A、B、C、D四点,四边形ABCD的面积就是四个三角形AOB、BOC、COD、DOA的面积之和,这四个三角形以四边形边为底,以垂线为高,可就得面积.因此,四边形面积=1/2*AB*4+1/2*
设四边长为abcd连续O到和顶点可得四个三角形则四边形的面积等于四个三角形的面积四个三角形的面积和:1/2*4a+1/2*4b+1/2*4c+1/2*4d=2(a+b+c+d)=2*36=72平方厘米
S四边形ABCD=1/2*AB*4+1/2BC*4+1/2*CD*4+1/2AD*4=1/2(AB+BC+CD+DA)*4=1/2*36*4=72平方厘米
该四边形ABCD是菱形.现证明如下:因为→OA+→OC=→OB+→OD,所以→OA-→OB=→OD-→OC即:→BA=→CD所以ABCD是平行四边形.因为(→AO+→OC)*(→BO+→OD)=0,即
证明:在BA的延长线上取一点E,则AD平分∠EAC,∠EAD=∠CAD∵四边形ABCD是圆O的内接四边形∴∠EAD=∠DCB【圆外接四边形外角等于内对角】∠DAC=∠DBC【同弧所对的圆周角相等】∴∠
如图(1),∵四边形ABCD是正方形,△PAD是等边三角形,∴∠BAP=∠BAD+∠PAB=90°+60°=150°.∵PA=AD,AB=AD,∴PA=AB,∴∠ABP=12(180°-150°)=1
OA-OB=OD-OC即BA=CD从而BA//CD且BA的模=CD的模即ABCD是平行四边形
(2)A1(-1,1)B1(-1,3)C1(4,3)D1(4,1)(3)设t秒后与长方形面积相等此时,B1横坐标为-1+t,D1横坐标为4+t,BC延伸交纵轴于点M,CD延伸交横轴于点N,这样就可以求
(1)D的坐标为(2,1)(2)2秒后所得的四边形A1B1C1D1四个顶点的坐标各向右平移2个单位即x轴加2,所以A1(-1,1)B1(-1,3)C1(4,3)D1(4,1)(3)设为x秒后,平移后△
(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC∵AB是圆O的直径,∴BC⊥AC∵DC∩AC=C,∴BC⊥平面ADC.∵DE∥BC,
如AB平行CD,就是一矩形如AB不平行CD,就是一等腰梯形连接AC,因AD平行BC,则角DAC=角ACB则AB=CD(1)如AB不平行CD,则四边形ABCD为等腰梯形(2
AC=3,PC=0.6,∴AP=2.4,设BP=x,PD=y,则AB=BP=x+y,由相交弦定理,xy=1.44,y=1.44/x,①由△PAB∽△PDC得AB/DC=PA/PD,∴DC=AB*PD/