已知O是三角形ABC的重心,求证:向量OA 向量OB 向量OC=零向量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 11:49:08
证明:如图所示,设D为BC边的中点,则OB+OC=2OD.∵O是△ABC的重心,∴OA=−2OD,∴OA+OB+OC=0.
点O是三角形ABC的重心 ==> 中线AD、BE、CF过点O,且 向量AO=2向量OD,向量BO=2向量OE,向量CO=2向量OF.延长AD到G使得 向量
等于对应中线长度之比
由于G是三角形ABC的重心,则有向量GA+向量GB+向量GC=零向量,即向量OA-向量OG+向量OB-向量OG+向量OC-向量OG=零向量故向量OA+向量OB+向量OC=3向量OG即λ=3
取BC中点D,连结并延长OD至E,使DE=OD于是四边形BOCE是平行四边形所以向量OB=向量CE所以向量OB+向量OC=向量CE+向量OC=向量OE而由向量OA+向量OB+向量OC=0得向量OB+向
G是三角形的重心吧.向量AG=1/3(AC+AB),向量AG*向量BC=AG•(AC-AB)=1/3(AC²-AB²)=1/3•(25-169)=-48.
由三角形重心(x,y)坐标公式:x=(x1+x2+x3)/3=(-1-2+4)/3=1/3y=(y1+y2+y3)/3=(5-1+7)/3=11/3重心(x,y)=(1/3,11/3)
解:点G为三角形ABC的重心,则DG/GA=1/2,DG/DA=1/3.GE平行AB,则⊿DGE∽⊿DAB.则S⊿DGE/S⊿DAB=(DG/DA)²=1/9,S⊿DAB=9S⊿DGE=18
(1)中使用了重心的向量规律,从重心延伸出的分别连接到三角形三个顶点的三个向量的和向量为零向量.∴和向量的水平分向量也为零向量∵x₁-x、x₂-x、x₃-x分别为这
因为AB=5,BC=6,所以AD=4,设AO=r,在直角三角形BDO中,由勾股定理,得,r^2=(4-r)^2+3^2解得,r=25/8,因为G是重心所以AG=2AD/3=8/3所以OG=AO-AG=
解∵AB=5,BC=6,∴BD=3∴AD=4,设AO=R,在直角△BDO中,由勾股定理,得,R^2=(4-R)^2+3^2解得,R=25/8,因为G是重心∴AG=2AD/3=8/3∴OG=AO-AG=
OA+OB=OD(作出平行四边形)则OD交AB于E,则E为AB中点,又OA+OB=-OC,则-OC=OD,故O,C,D,E四点共线,即CE为中线,同理证其它情况得O中线交点,则为重心
设A,B,C坐标为(x1,y1),(x2,y2),(x3,y3)点O坐标(x,y)OA+OB+OC=0x1-x+x2-x+x3-x=0y1-y+y2-y+y3-y=0x=(x1+x2+x3)/3y=(
因为向量BC=向量AC-向量AB,向量AG=1/3(向量AB+向量AC),所以向量BC*向量AG=1/3(|AC|²-|AB|²)=1/3(13²-5²)=14
连接CG并延长交AB于H,设CE=X∵G是△ABC的重心∴CG/GH=2/1,AH=BH∵CF∥AB∴CF/DH=CG/GH=2/1∴DH=CF/2=X/2∵DE∥BC∴平行四边形BCFD∴BD=CF
首先,明确一个事实:在三角形ABC中,G为重心,那么有GA+GB+GC=0(当然,这些都是向量)(证明就是利用GA+GB,做平行四边行,为GC的相反向量而得)有了前面的铺垫,那么由OA+OB+OC=R
构造平行四边形OBDC向下你应该能想出起了