已知o是三角形abc所在平面内一点且向量OA 2向量OB 3向量OC=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:13:40
OA*OB=OB*OC0=OB*(OA-OC)=OB*CA,OB⊥CA同理OA⊥BCOC⊥ABO是⊿ABC的垂心.请留意,由此可以得到三角形三个高交于一点的一个向量证明方法,楼主不妨试试.(即从OA⊥
是不是这样的?|OB-OC|=|OB+OC-2OA|如果是的话,那么首先合并一下得到:|CB|=|AB+AC|即|AB-AC|=|AB+AC|(AB-AC)*(AB-AC)=(AB+AC)*(AB+A
∵a+b+c=0∴a+b=-c即OA+OB=-OC取AB中点为P则OA+OB=2OP∴OC=-2OP∴C,O,P三点共线,且|OC|=2|OP|CP是中线,那么O是三角形的重心,a●b=b●c=c●a
取BC中点D,连结并延长OD至E,使DE=OD于是四边形BOCE是平行四边形所以向量OB=向量CE所以向量OB+向量OC=向量CE+向量OC=向量OE而由向量OA+向量OB+向量OC=0得向量OB+向
已知点O为△ABC所在平面内一点,若向量OA+向量OB+向量OC=0,则点O是△ABC的重心
一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心
用字母表示向量|OB-OC|=|OB+OC-2OA|平方得OB^2-2OB*OC*cos+OC^2=OB^2+2OB*OC*OC*cos+OC^2+4OA^2-4OA*OB*cos-4OA*OC*co
向量CB点积向量AB=0说明两向量互相垂直三角形ABC为直角三角形.
/>2OA+OB+OC=0OB+BD=ODOC+CD=OD将上面两式相交OB+OC=2OD根据题意:2OA+2OD=0OA+OD=0A0=OD再问:将上面两式相交这是什么。。。。。。。。。。。。。再答
A2OA+OB+OC=0OB+BD=ODOC+CD=OD将上面两式相交OB+OC=2OD根据题意:2OA+2OD=0OA+OD=0A0=OD
因为PA*PB=PB*PC所以PA*PB-PB*PC=0PB*(PA-PC)=0PB*CA=0所以PB与CA垂直同理可证PA垂直于BC,PC垂直于AB所以点P是三角形ABC的垂心.
因为O是三角形ABC的外心所以OA=OB=OC因为PA=PB=PC,PO=PO=PO所以△PAO≌△PBO≌△PCO所以∠POA=∠POB=∠POC=90°所以PO垂直平面ABC
(1):∵PA⊥PB,PA⊥PC∴PA⊥PBC∴PA⊥BC∵O是三角形ABC的垂心∴OA⊥BC,∴BC⊥AO同理AC⊥BO,AB⊥CO,∴OA⊥ABC得出结论(2):延伸AO交BC与D,则AD⊥BC由
OB+OC=2OD,2OA+OB+OC=0=2OA+2OD,OA+OD=0,AO=OD,选A.
在同一平面内满足(向量OB-向量OC)*(向量OB+向量OC-2向量OA)=0的条件有两个1、向量OB-向量OC=02、向量OB+向量OC-2向量OA=0条件1、向量OB-向量OC=向量CB=0则C和
A.延长AD,到E使OD=DE.那么向量OB+OC=OE=AD=2AO.要说明的话,因为2OA=-(OB+OC),并OB+OC过点D.所以A,O,D共线.
记k=sinA/(sinA+sinB)则向量AO=k向量AB+(1-k)向量AC=k(向量AC+向量CB)+(1-k)向量AC=k向量CB+向量AC所以向量CO=向量AO-向量AC=k向量CB而0
证明:假设O是三角形ABC的垂心成立,并设三边AB,AC,BC上的垂足分别是F,E,D,则有OA^2=AE^2+OE^2BC^2=BE^2+EC^2则有OA^2+BC^2=AE^2+OE^2+BE^2
P是三角形ABC所在平面&外的一点,P到三角形ABC三边的距离相等,O为P在平面&内的射影,且在三角形ABC内.求证:O是三角形ABC的内心.
向量OA*OB=OB*OC=OC*OAOA*OB=OB*OCOB(OA-OC)=0所以向量OB*CA=0所以向量OB垂直于向量CA同理:向量OA垂直于向量BC向量OC垂直于向量AB所以:点o是三角形A