已知O是三角形ABC所在平面上一点abc分别三角形的三边的长度若a向量OA
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 22:14:46
延长BQ直线与PC交于D延长BO直线AC交于E则BQOEF在一个平面内∵O、Q为三角形ABC和PBC的垂心∴BD⊥PC,BE⊥AC∵PA⊥平面ABC,BE在平面ABC内∴PA⊥BE∴BE⊥平面PAC,
这个题目用的是"两个相交平面都垂直于第三个平面那么,这两个平面的交线就垂直于第三个平面".这个问题不知道你的老师讲过没有.
OA*OB=OB*OC0=OB*(OA-OC)=OB*CA,OB⊥CA同理OA⊥BCOC⊥ABO是⊿ABC的垂心.请留意,由此可以得到三角形三个高交于一点的一个向量证明方法,楼主不妨试试.(即从OA⊥
是不是这样的?|OB-OC|=|OB+OC-2OA|如果是的话,那么首先合并一下得到:|CB|=|AB+AC|即|AB-AC|=|AB+AC|(AB-AC)*(AB-AC)=(AB+AC)*(AB+A
∵a+b+c=0∴a+b=-c即OA+OB=-OC取AB中点为P则OA+OB=2OP∴OC=-2OP∴C,O,P三点共线,且|OC|=2|OP|CP是中线,那么O是三角形的重心,a●b=b●c=c●a
取BC中点D,连结并延长OD至E,使DE=OD于是四边形BOCE是平行四边形所以向量OB=向量CE所以向量OB+向量OC=向量CE+向量OC=向量OE而由向量OA+向量OB+向量OC=0得向量OB+向
一楼的错,应该是内心作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F连接OD,OE,OF由勾股定理得:OD=OE=OFO到三角形ABC的三边距离相等故O是内心
/>2OA+OB+OC=0OB+BD=ODOC+CD=OD将上面两式相交OB+OC=2OD根据题意:2OA+2OD=0OA+OD=0A0=OD再问:将上面两式相交这是什么。。。。。。。。。。。。。再答
因为O是三角形ABC的外心所以OA=OB=OC因为PA=PB=PC,PO=PO=PO所以△PAO≌△PBO≌△PCO所以∠POA=∠POB=∠POC=90°所以PO垂直平面ABC
(1):∵PA⊥PB,PA⊥PC∴PA⊥PBC∴PA⊥BC∵O是三角形ABC的垂心∴OA⊥BC,∴BC⊥AO同理AC⊥BO,AB⊥CO,∴OA⊥ABC得出结论(2):延伸AO交BC与D,则AD⊥BC由
垂心证:已知PA垂直BC,且PO是平面ABC的垂线,即AO是PA在平面ABC内的射影,所以由三垂线定理逆定理得:AO垂直BC,同理,BO垂直AC.综上,点o为垂线焦点,即垂心.
OB+OC=2OD,2OA+OB+OC=0=2OA+2OD,OA+OD=0,AO=OD,选A.
在同一平面内满足(向量OB-向量OC)*(向量OB+向量OC-2向量OA)=0的条件有两个1、向量OB-向量OC=02、向量OB+向量OC-2向量OA=0条件1、向量OB-向量OC=向量CB=0则C和
A.延长AD,到E使OD=DE.那么向量OB+OC=OE=AD=2AO.要说明的话,因为2OA=-(OB+OC),并OB+OC过点D.所以A,O,D共线.
记k=sinA/(sinA+sinB)则向量AO=k向量AB+(1-k)向量AC=k(向量AC+向量CB)+(1-k)向量AC=k向量CB+向量AC所以向量CO=向量AO-向量AC=k向量CB而0
用AB表示起点为A终点为B的向量则有:|BC|2=(BO+OC)2=|BO|2+|OC|2-2*OB*OC|CA|2=(CO+OA)2=|CO|2+|OA|2-2*OC*OA再由已知条件可以得到:|B
∵P是△ABC所在平面外一点,点O是点P在平面ABC上的射影又∵PA=PB=PC,则O点到A,B,C的距离也相等即OA=OB=OC则O点为△ABC的外心故选A
OA=OD.因为利用平行四边形定则,OB+OC=2OD.
∵P为RT三角形ABC所在平面ABC上的射影O恰为AC的中点∴由题意可知道:PO⊥AC,面PBO⊥面ABC,∴△PBO为直角三角形,∵PB=AB=1,BC=根号2,O恰为RT△三角形ABC的边AC的中