已知oa ob是圆o的半径,且OA=5,角AOB-15°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 07:15:38
过点O作OE⊥AB∵矩形ABCD∴BC⊥AB∵AB=2,BC=2√3∴AC=√(AB²+BC²)=√(4+12)=4∵OE⊥AB∴OE∥BC∴OE/AO=BC/AC∵AO=m∴OE
(1)连接OQ∵QE为圆O的切线∴∠OQE=∠OQB+∠BQA+∠AQE=90°∵OQ=OB∴∠OQB=∠OBP∠BQA=∠AOB/2=45°故∠OBP+∠AQE=45°(2)∠OBP+∠AQE=45
因为OA,OB是圆心中点O的半径所以OA=OB,因为AM=2OM,BN=2ON所以OM=1/3OA,ON=1/3OB所以OM=ON因为MC=NC,OC=OC所以△OMC全等于△ONC(边边边)所以∠A
1:AB=2,BC=2根号3,所以角BAC是60度,AC=4,没有公共点,就是O到AB的距离大于1,所以OA>2根号3/3.应该在AC上,所以OA还要不大于4.2:圆与AB相切时,O到AB距离为1,所
AB=2,BC=2根号3,所以角BAC是60度,AC=4,没有公共点,就是O到AB的距离大于1,所以OA>2根号3/3.应该在AC上,所以OA还要不大于4.
∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直
证明三角形AOD和BOC全等SAS(边角边)第一边FO=BO,公共角BOF,第二边CO=DO(半径的一半同样相等);所以三角形AOD全等于三角形BOC,所以角A=角B
证明:连接OB因为OB=OA所以∠OAB=∠OBA因为BC=CD所以∠CDB=∠DCB因为∠ADO=∠CDB所以∠ADO=∠DCB因为∠ADO+∠OAB=90所以∠DCB+OBA=90所以∠OBC=9
(1)证明:连接AO,因为△ABC中,AB=AC,∠ABC=30°,所以∠ACB=∠ABC=30°,即∠BAC=120°,又因为OA=OC所以∠OAC=∠OCA=30°,因此∠OAB=90°,即OA⊥
连接AC,BC,AO并延长交圆O于E,连接BE,所以角ABE=90度,角C=角E,在直角三角形ABE中,sin
如图,连接O1D,∵圆O1的切线AD交OC的延长线于点E,∴O1D⊥AE,由题意知,CO=AO=2r,O1D=O1C=r,由切线长定理知,AD=AO=2r,∴AO1=根号5r,由勾股定理得,AE2=A
再问:最后看不清再答: 再答:这样呢再问:看清了
答;由题意可知.A.C.D三点在以B为圆心,a为半径的圆上.圆弧AC所对的圆心角是角ABC=60°.所对圆弧角是角ADC,则等于30°有因为角ADC等同于角ADE是以O为圆心的圆弧角,则圆弧AE对应的
如图,圆周角B=1/2<AOC=<AOD,AD=2,sinB=2/5AE=ABsinB=12/5
作OM⊥BC于点M.∵AD=13,OD=5,∴AO=8∵∠DAC=30°,∴OM=4.在Rt△OCM中,OM=4,OC=5,∴MC=3∴BC=2MC=6.
(1)连接AO’并延长交圆O’于F,连接OF,过点O作OC垂直于AB.则∠AFO=∠OCA.∵AF为直径,∴AOF=90°又∵OC垂直于AB,∴∠OCB=90°=∠AOF.∴△OCB相似于△AOF,于
第一题是(1)..第二题是(4)..第三题是(1)..第四题是(相等)..
答案没错,刚开始我也没看懂图大概就是我给你这个,这道题的主要意思就是O的半径和O1的圆心组成的图形所以OO1=3-2=1 这就是答案了