已知n阶矩阵满足,2A(A-E)=A的三次方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:18:39
已知n阶矩阵满足,2A(A-E)=A的三次方
已知N阶方阵A满足A^2=4A,证明A-5E可逆,并求A-5E的逆矩阵

设方阵满足A^2-4A+E=0,证明A及4A+E均可逆,并求A及4A+E的逆矩阵因为A^2-4A+E=0所以A(A-4E)=-E所以A可逆,且A逆=-

已知:n阶矩阵A满足A=A平方,证明:E-2A可逆且(E-2A)的负一次方等于E-2A

A=A^24A^2-4A+E=E(E-2A)(E-2A)=E所以E-2A可逆且(E-2A)的负一次方等于E-2A

已知N阶可逆矩阵A满足2A(A-E)=A^3,求(E-A)^(-1)

因为2A(A-E)=A^3所以A^3-2A^2+2A=0所以A^2(A-E)-A(A-E)+A-E=-E即(A^2-A+E)(E-A)=E所以E-A可逆,且(E-A)^-1=A^2-A+E.

已知n阶矩阵A满足 A^2(A-2E)=3A-11E,证明A+2E可逆,并求(A+2E)^-1

因为A^2(A-2E)=3A-11E所以A^3-2A^2-3A+11E=0所以A^2(A+2E)-4A(A+2E)+5(A+2E)+E=0所以(A^2-4A+5E)(A+2E)=E所以A+2E可逆,且

.已知n阶方阵A满足关系式A^2-3A-2E=0,证明A是可逆矩阵,并求出其逆矩阵.

A^2-3A=2EA*(A-3E)/2=E所以A可逆逆矩阵为A^(-1)=(A-3E)/2

已知n阶矩阵A满足A^2-2A-3E=0,证明A的特征值只能是-1或3,怎么证明只能?

等式两边去行列式就行了,得到2个等式即为丨-E-A丨=0或者丨3E-A丨=0再根据矩阵的特征多项式丨λE-A丨=0即可看出A的特征值为-1或者3再问:为什么是只能?再答:如果它还有别的特征值比如说0,

已知n阶矩阵A,B满足A加B等于A乘B,(1)试证A减E为可逆矩阵,其中E为n阶单位矩阵;(2)试证必有AB=BA

证明:因为A+B=AB所以(A-E)(B-E)=AB-A-B+E=E所以A-E可逆,且(A-E)^-1=B-E.由上知A-E与B-E互逆故有(B-E)(A-E)=E可得BA=A+B从而有AB=BA.

n阶矩阵A满足A^2+2A+3E 证明A+E可逆 并求逆

可以改写等式得出逆矩阵.请采纳,谢谢!

已知A是n阶方阵,且满足(A-E)^2=2(A+E),E是n阶单位矩阵,则A^-1=?

(A-E)²=2(A+E)²A²-2A+E=2A²+4A+2E整理得:A²+6A=-EA(A+6E)=-E所以A[-(A+6E)]=E故A^-1=-(

设N阶矩阵A满足A^2-2A+3E=0 ,则秩A=N

对.A(A-2E)=-3E,A可逆,A^(-1)=-(A-2E)/3

若n阶矩阵A满足A^2-A+E=0,证明A为非奇异矩阵

因为A^2-A+E=0所以A(A-E)=-E所以A可逆,且A^-1=-(A-E)=E-A

n阶矩阵A满足A²-3A+2E=0,-证明A-3E是可逆矩阵

刚看到因为A^2-3A+2E=0所以A(A-3E)=-2E所以A-3E可逆,且(A-3E)^-1=(-1/2)A.

已知n阶矩阵A满足矩阵方程A^2-2A-3E=0,且A-E可逆,求A-E的逆矩阵?

因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).

已知n阶方阵A满足 A^2-3A+E=0,则A的逆矩阵为多少?

A^2-3A+E=03A-A^2=E(3E-A)A==EA^(-1)=3E-A

设n阶矩阵A满足A^2-5A+5E=0,其中E为n阶单位矩阵,则(A-2E)^(-1)=

首先A^2-5A+6E=E,而A^2-5A+6E可分解为(A-2E)x(A-3E),所以(A-2E)^(-1)=A-3E.

设n阶矩阵A满足A^2=E,且|A+E|≠0,证明A=E

/>n阶矩阵A满足A^2=E,===》矩阵A的零化多项式无重根,并且根只能为正负1,===》矩阵A的最小多项式无重根,并且根只能为正负1,===》矩阵A可以对角化,并且矩阵A的特征值只能为正负1,又因