已知n阶矩阵A是正定的,证明:A的伴随矩阵A*也是正定的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:07:22
已知n阶矩阵A是正定的,证明:A的伴随矩阵A*也是正定的
证明,已知A是n阶矩阵,r(A)=n,证明A转置A是正定矩阵.下面是答案,我看不懂,

你需要再看一下教科书,这里的证明就是按照一个矩阵为正定的定义来证的.首先证明A'A对称,其次证明对任意的非零向量XX'(A'A)A>0

A,B都为n阶正定矩阵,证明:AB是正定矩阵的充分必要条件是AB=BA.

证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=

设A,B为两个n阶正定矩阵,证明:AB为正定矩阵的充要条件是AB=BA.

证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=

线性代数问题已知 n阶矩阵A ,A正定 证明:A^(-1)正定

特征值为A的倒数,也为正,所以为正定

已知A,B为n阶正定矩阵,且有AB=BA,证明:AB也是正定矩阵.

因为AB=BA所以(AB)^T=B^TA^T=BA=AB所以AB是对称矩阵.由A,B正定,存在可逆矩阵P,Q使A=P^TP,B=Q^TQ.故AB=P^TPQ^TQ而QABQ^-1=QP^TPQ^T=(

A是n阶正定矩阵,证明A的伴随矩阵也是正定矩阵

首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到

设A是n阶正定矩阵,AB是n阶实对称矩阵,证明AB正定的充要条件是B的特征值全大于零

因为A正定,所以存在可逆阵C,使得A=C^TC而AB=C^TCB=C^T(CBC^(-1))C所以AB与CBC^-1合同.所以有AB正定CBC^-1正定CBC^-1的特征值都大于0B的特征值都大于0

A是n阶正定矩阵,证明A的n次方矩阵也是正定矩阵

A正定《=》A所有特征值都是正的而A的n次方的特征值=A的特征值的n次方所以,A所有特征值都是正的《=》A的n次方的特征值都是正的这又《=》A的n次方是正定的

设A,B均是n阶正定矩阵,证明A+B是正定矩阵

转置符号用'代替说明首先,第一步(A+B)’=A‘+B’=A+B所以A+B是对称矩阵其次,任取x≠0根据正定定义x‘Ax>0.x‘Bx>0.于是x’(A+B)x=x‘Ax+x‘Bx>0所以A+B是正定

n阶矩阵A既是正交矩阵又是正定矩阵 证明A是单位矩阵

楼上的想法不对吧,你只说明了矩阵A是一个对角矩阵,并且可能是单位阵的倍数,不能说明A是单位阵,要说明单位阵,除了说明:“正交矩阵表明A^(-1)=A',正定矩阵表明A合同于E,即A=C'EC,所以A^

证明若A是n阶正定矩阵,则存在n阶正定矩阵B,使A=B^2

如果A=U'U,则A'=(U'U)'=U'U=A,故A是对称的,对任意非零x,由U可逆,Ux也非零,由x'Ax=x'U'Ux=(Ux)'(Ux)>0,故A是正定矩阵.充分性得证.如果A为对称正定矩阵,

证明:如果a是n阶正定矩阵,则a*及a+a*也是正定矩阵

1、对称性显然2、a*=|a|a^(-1)3、a正定则特征值全为正,从而a^(-1)的特征值为正4、容易看出a*,a+a*的特征值为正,正定

已知A-E是n阶正定矩阵,证明E-A^(-1)也是正定矩阵.

(A-E)(A-E)T=AAT-AT-A+E=EAAT=A+ATATA=A+AT.(1)由题目要证明的可知A可逆(1)两边取逆矩阵A^(-1)(AT)(-1)=A^(-1)+[A^(-1)]T..(2

证明若A是n阶正定矩阵,则存在 n阶正定矩阵B,使得A=B^2

正定矩阵都是对称阵,所以可以正交相似对角化.即存在正交阵O使得A=O'diag{a1,a2,...,an}O,再由A正定知对角元全为正数,即a1,a2,...,an>0.令b1=√a1,b2=√a2,

求助已知A是n阶正定矩阵,B是n阶反对称矩阵,证明A-B^2也为正定矩阵.

对非零列向量xBx是一个列向量则(Bx)'(Bx)>=0[这里要求B是实矩阵--线性代数默认]这是内积的非负性(一个性质),原因:设Bx=(a1,...,an)'则(Bx)'(Bx)=a1^2+...

大学线性代数:已知A,B为n阶正定矩阵,且有AB=BA,证明:AB也是正定矩阵.

再问:谢谢啊!!网上的我都看不懂,看懂了你教的了。

设A为n阶正定矩阵,B是与A合同的n阶矩阵,证明B也是正定矩阵.

这是基本结论,可由定义证明.经济数学团队帮你解答.请及时评价.

已知A是n阶正定矩阵,证明A的伴随矩阵A*也是正定矩阵.

首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到

关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为

1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值