已知n阶矩阵A,B,C满足ABC=E,其中E为n阶单位矩阵,则1 B=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:06:05
设n阶矩阵A,B满足AB=aA+bB.其中ab不等于0,证明AB=BA.证:以下记单位矩阵(幺阵)为E.由已知得(A-bE)(B-aE)=abE0两边求行列式,均不为零,故det(A-bE)0,故A-
这不是原题吧由AB-A-B=0得(A-E)B=A[注意左右的差别]则B=(A-E)^-1A但从你题目中推不出A-E可逆若要继续讨论,请给原题再问:已知设n阶方阵A,B满足AB=A+B证明A-E可逆这就
证明:由A+2B=AB得(A-2E)(B-E)=2E所以B-E可逆,且(B-E)^-1=(1/2)(A-2E).所以(B-E)(A-2E)=2E整理有BA=A+2B再由已知得AB=BA.
易知:A是m*n矩阵,且列向量组线性无关,所以r(A)=n,所以r(AB)=r(A)=n,因为n=r(AB)≤r(B)(或r(A))≤n(B是n阶矩阵)所以n≤r(B)≤n=>r(B)=n(2)此外,
碰到这种问题不要偷懒,直接用待定系数法把B的9个元素设出来,然后乘开来比较等上面的做法做过一遍之后再做取巧一点的办法:(A-E)B=B(A-E),同样乘开来比较上面两个都做过之后可以设法去证明与Jor
不对.反例:A:ab00cd00B:00001234A:2×4矩阵,a,b,c,d任取.B:4×2矩阵,R(B)=2AB=0
AB-B=A,(A-E)B-E=A-E,(A-E)(B-E)=E,所以A-E可逆逆矩阵为B-E由1知(A-E)和B-E互逆所以(B-E)(A-E)=E与(A-E)(B-E)=E,展开比较就可以得到AB
也是对的,看一下Sylvester不等式
1这个A不一定是可逆的.如果不可逆,A^(-1)不存在2跟第一个一样的错误
证明:因为A+B=AB所以(A-E)(B-E)=AB-A-B+E=E所以A-E可逆,且(A-E)^-1=B-E.由上知A-E与B-E互逆故有(B-E)(A-E)=E可得BA=A+B从而有AB=BA.
证∵(A-E)(B-E)=E又:det(A-E)*det(B-E)=detE=1∴det(A-E)≠0∴A-E是可逆阵
除非n=1,不然怎么可能有那么强的结论,随便举个反例就行了即使加上AB=BA的条件,也得额外考虑一个排列的问题,没那么轻描淡写再问:矩阵四则运算后,和原来的特征值和特征向量还有关系吗?再答:大多数情况
归纳法:因为AB=BA,所以A^iB^j=A^jB^i(i,j=0,1,2,3……)对于m=1,(A+B)^1=A^1+B^1,原式成立假设(A+B)^m=A^m+mA^(m-1)B+C(2,m)A^
detA·detB=det(AB)=det(E)=1所以det(A)≠0所以A可逆A·B=E设B'·A=E则B'=B'·E=B'·(A·B)=(B'·A)·B=E·B=B所以AB=BA=E所以A的逆矩
由A+B=AB,得(A-E)(B-E)=E所以A-E=(B-E)^-1=0-30200001的逆矩阵=01/20-1/300001所以A=11/20-1/310002
我先告诉你AC=BC时C不可以轻易约掉因为可变为(A-B)C=0当A不等于B(即A-B不等于0),C不为0时(A-B)C也可以等于0举个例子当A-B={100;010;001}C={011;101;1
这个(C)正确因为A,B正定所以|A|>0,|B|>0所以|AB|=|A||B|>0所以AB可逆.
(1)A^2+B^2+C^2=A(BC)A+B(CA)B+C(AB)C=(AB)(CA)+(BC)(AB)+(CA)(BC)=E^2+E^2+E^2=3E.(2)线性相关,则行列式为0,展开可得0+3
若η是齐次线性方程组Bx=0的解则Bη=0所以Cη=ABη=A0=0所以η也是齐次线性方程组Cx=0的解.反之,若η是Cx=0的解则有(AB)η=0所以A(Bη)=0由于r(A)=n,所以Ax=0只有
只要找出一个非零解满足(E-AB)Y=0,就可以说明与题设矛盾,假设E-BA不可逆,则(E-BA)X=0有非零解,则可得X=BAX.又(E-AB)AX=AX-ABAX=AX-AX=0,即AX为(E-A