已知n维向量a1,an中,前n-1个向量线性相关,后n-1个向量线性无关

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:08:29
已知n维向量a1,an中,前n-1个向量线性相关,后n-1个向量线性无关
已知等差数列{an}中,a1=1,a3=-3.数列{an}的前n项和Sn.

(1)由题意可得数列的公差d=a3−a13−1=-2,故数列{an}的通项公式an=1-2(n-1)=3-2n;(2)由等差数列的求和公式可得:Sk=k(1+3−2k)2=-35,化简可得k2-2k+

数列an中,已知a1=1/2,且前n项和Sn=n^2an,则an=

/>(1)S2=2^2*a2=a1+a2=1/2+a2a2=1/6S3=3^2*a3=a1+a2+a3=1/2+1/6+a3a3=1/12S4=4^2*a4=a1+a2+a3+a4=1/2+1/6+1

已知数列{an}中,a1=1,前n项和Sn=n+23an

(1)数列{an}中,a1=1,前n项和Sn=n+23an,可知S2=43a2,得3(a1+a2)=4a2,解得a2=3a1=3,由S3=53a3,得3(a1+a2+a3)=5a3,解得a3=32(a

已知数列{an}中,a1=1,Sn是它的前n项和,S(n+1)=4an+2(n是正整数)

1)由S(n+1)=4an+2,知S(n)=4a(n-1)+2,两者相减,得S(n+1)-S(n)=a(n+1)=4[an-a(n-1)]由bn=a(n+1)-2an知,b(n-1)=an-2a(n-

已知数列{an}中,a1=3,前n项和Sn=12(n+1)(an+1)−1

(Ⅰ):证明:∵Sn=12(n+1)(an+1)−1,∴Sn+1=12(n+2)(an+1+1)−1∴an+1=Sn+1−Sn=12[(n+2)(an+1+1)−(n+1)(an+1)]整理,得nan

已知数列{an}中,a1=1,前n项和sn=(n+2)an/3,求a2,a3求{an}的通项公式

s2=4a2/3=a2+a1a2=3a1=3s3=5a3/3=a3+s2a3=3s2/2=6an=sn-s(n-1)=(n+2)an/3-(n+1)a(n-1)/3(n-1)an/3=(n+1)a(n

已知数列{an}中,a1=1,前n项和sn=(n+2/3)an,求an的通项公式,

当n≥2,an=Sn-Sn-1=[(n+2)*an]/3-[(n+1)*an-1]/3an/an-1=(n+1)/(n-1)(a2/a01)*(a3/a2)……*(an-1/an-2)*(an/an-

已知数列{an}中,a1=2,前n 项和为Sn,若Sn=n^2*an,

因为Sn=n^2*an.1Sn-1=(n-1)^2*an-1n≥2.21-2:an=n^2*an-(n-1)^2*an-1(n^2-1)*an=(n-1)^2*an-1(n+1)*an=(n-1)*a

1.已知数列{an}中a1=2,前n项和Sn,若Sn=n平方*an,则an=?

1[Sn-S(n-1)][Sn+S(n-1)]=an^3an[Sn+S(n-1)=an^3an不为0故Sn+S(n-1)=an^2Sn+Sn-an=an^22Sn=an^2+an2S(n-1)=[a(

在数列{an}中,已知a1=1,a(n+1)=2an/(an+2),求数列{anan+1}的前n项和

1/a(n+1)=an+2/2an=1/2+1/an所以,{1/an}是公差为1/2的等差数列1/an=1/a1+(n-1)*1/2=(n+1)/2an=2/(n+1)a(n+1)=2/(n+3)an

已知在数列an中,前n项和Sn=n²+n,求①a1,a2,a3,②数列an的通项公式an

a1=Sna1=S1=2an=Sn-Sn-1=n²+n-(n-1)²-(n-1)=2nan=2na2=2*2=4a3=2*3=6a1=2,a2=4,a3a=6an=2n

已知数列an中,a1=2,前n项和sn,若sn=n^2an,求an

sn=n^2ans(n-1)=(n-1)^2*a(n-1)sn-s(n-1)=n^2an-(n-1)^2*a(n-1)=an(n^2-1)an=(n-1)^2a(n-1)(n+1)an=(n-1)a(

在数列an中,已知a1=2,an+1=2an/an +1,令bn=an(an -1).求证bn的前n项和

证:a(n+1)=2an/(an+1)1/a(n+1)=(an+1)/(2an)=(1/2)(1/an)+1/21/a(n+1)-1=(1/2)(1/an)-1/2=(1/2)(1/an-1)[1/a

已知数列{an}中,a1=5,an=2a(n-1)+2^n-1(n∈N*,n≥2) 求数列{an}的前n项和Sn

数列{an}中,a1=5,an=2a+2^(n-1)(n∈N*,n≥2),∴an/2^(n-1)=a/2^(n-2)+1=……=a1+n-1=n+4,∴an=(n+4)*2^(n-1),∴Sn=5+6

已知数列{an}中,a1=1,前n项和Sn=(n+2/3)an.

解题思路:同学你好,利用递推法求两项间关系,再利用累积法求通项解题过程:

已知等差数列an中,a1=1 前n项和SN满足条件S(2n-1)/Sn=4n-2/n+1

1)s3/S1=1得s3=s1又a1=1所以a3=1得an=n-12)Sn=n^2/2Bn=2/n^23)Tn

已知等差数列an中,a1=1,前n项和Sn,若S(n+1)/Sn=(4n+2)/(n+1),求an

由S(n+1)/S(n)=(4n+2)/(n+1),可得a(n+1)/S(n)=S(n+1)/S(n)-1=(3n+1)/(n+1),所以S(n)=(n+1)/(3n+1)*a(n+1)以n-1代替n

已知等差数列{an}中,a1=3,前n项和Sn=1/2(n+1)(an+1)-1,求数列{an}的公差.

设公差为dSn=1/2(n+1)(an+1)-1=1/2nan+1/2n+1/2an+1/2-1S(n-1)=1/2(n-1+1)(a(n-1)+1)-1=1/2na(n-1)+1/2n-1由Sn-S