已知n价方阵A满足A3=3A(A-E)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 14:11:17
A^2-3A-4E=0A^2-3EA=4E(A-3E)A=4E所以|A-3E||A|=|4E|=4^n≠0所以|A|≠0故A可逆因为(A-3E)A=4E所以[(A-3E)/4]A=E所以A^(-1)=
A^2-2A-3E=0A^2-2A=3EA(A-2E)=3EA(1/3*A-2/3*E)=E所以A可逆,A的逆矩阵为1/3*A-2/3*E
因为A^2=E所以(A-E)(A+E)=0题目是不是有问题
答案见补充图片再问:怎么看补充图片啊再答:在上传中,百度抽风,要等一会
A^2-3A=2EA*(A-3E)/2=E所以A可逆逆矩阵为A^(-1)=(A-3E)/2
(E+3A)(E-3A)=E-9A^2=E
A^2=4AA(A-4I)=0A=0orA-4I=0ifA=0A-4I=-4I(A-4I)^(-1)=(-1/4)IifA-4I=0A-5I=-Ithen(A-5I)^(-1)=-IieA-5I可逆
做法是这样的:A^2+2A=3E再因式分解A*(A+2E)/3=E所以A的逆矩阵是(A+2E)/3
即2A(A-E)-E=A³-E2A(A-E)-E=(A-E)(A²+A+E)有(A-E)(A²-A+E)=-E有(E-A)(A²-A+E)=E所以E-A可逆,并
A^3+A^2-2A=0A^2(A+I)-2A-2I=-2I(A^2-2I)(A+I)=-2I-1/2(A^2-2I)(A+I)=I所以A+I可逆逆阵是-1/2(A^2-2I)
等比数列是an+1/an=q是一个与一个与n无关的数
1这个A不一定是可逆的.如果不可逆,A^(-1)不存在2跟第一个一样的错误
[证明](方法一:构造法)见下图\x0d\x0d[证明](方法二:利用特征值与特征向量)见下图\x0d\x0d[证明](方法三:利用极小多项式)\x0d因为A满足A2+2A-3E=O,即(A-E)(A
显然由A^2+3A+4E=0可以得到(A+E)(A+2E)=-2E,即(A+E)(-A/2-E)=E,所以由逆矩阵的定义可以知道,(A+E)^-1=-A/2-E
当n=>2An=3^(n-1)+An-1即An-An-1=3^(n-1)An-1-An-2=3^(n-2).A4-A3=3^3A3-A2=3^2将以上式子累加左边=An-A2右边=3^2+3^3+……
A^2-3A+E=03A-A^2=E(3E-A)A==EA^(-1)=3E-A
已知矩阵M=2321,求矩阵M的特征值与特征向量.考点:特征值与特征向量的计算.专题:计算题.分析:先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的
a2=a1+2a2=1+2a2得a2=-1an=a1+2a2+3a3+...+(n-2)a(n-2)+(n-1)a(n-1)a(n-1)=a1+2a2+3a3+...+(n-2)a(n-2)两式相减:
由a1+3a2+3^2a3+……+3^(n-1)an=n/3和a1+3a2+3^2a3+……+3^(n-1)an+3^na_(n+1)=(n+1)/3得3^n*a_(n+1)=1/3所以a_(n+1)
A*(A-2E)/(-3)=E,故A的逆为-1/3*(A-2E)