:.是⊙O的切线,.是切点,,点是上异于.的任意一点,那么 ________.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:26:57
∵PA、PB是⊙O的切线,切点分别是A、B,∴PA=PB=12,∵过Q点作⊙O的切线,交PA、PB于E、F点,∴EB=EQ,FQ=FA,∴△PEF的周长是:PE+EF+PF=PE+EQ+FQ+PF,=
考点:切线的判定;全等三角形的判定;相似三角形的判定与性质.分析:连接OD,由BC是⊙O的切线得到∠B=90°,然后证明△OCD≌△OCB,得到∠ODC=90°,证明:连接OD,∵BC是⊙O的切线,∴
依题意:EA=EQ,FB=FQ,PA=PB=10∴C△PEF=PE+PF+EF=PE+PF+EQ+FQ=PE+PF+EA+FB=PA+PB=20连结AO、QO、BO易得:△AOE≌△QOE,△BOF≌
题目不完整,我估计F是CD与BE的交点连接EO,则CE垂直于EO,则角CEF+角OEF=90度,又因为AB为直径,故角AEB=90度,即角AEO+角OEF=90度,故角AEO=角CEFCE为切线,则角
证明:连接OD,∵OD=OA,∴∠OAD=∠ODA,∵OC∥AD,∴∠OAD=∠BOC,∠DOC=∠ODA.∴∠DOC=∠BOC,∵OD=OB,OC=OC,∴△DOC≌△BOC.∴∠ODC=∠OBC.
连DO∴∠DOC=∠ADO=∠DAO=∠COB又∵DO=BO,OC=OC∴△DOC≌△BOC∴∠ODC=∠OBC=90°∴DC是切线证毕
列方程x^2-(9r/2)x+2r^2=0,解x=4r或x=r/2,所以OC=4r,CD^2=(4r)^2-r^2=14r^2,CD=(根号下14)*
OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则
∵PA、PB是⊙O的两条切线,切点为A、B,∴OA⊥PA于A,OB⊥PB于B,又∵OA=OB,OP=OP,∴Rt△OAP≌Rt△OBP,∴∠AOP=∠BOP=12∠AOB,∴∠AOP=60°.在Rt△
证明:△AOP≌△BOP∴PA=PB△AOP≌△CAP∴PA/PC=PO/PA∴PA^2=PC*PO∴PA^2=PB^2=PC*PO
我会再问:给我再答:你先点个采纳我一会就做出来了再问:靠,我有种上当受骗的感觉喃再答:是的再问:你,,,再问:我太单纯了
证明:连接OD;∵OA=OD,∴∠A=∠ADO.∵AD∥OC,∴∠A=∠BOC,∠ADO=∠COD.∴∠BOC=∠COD.∵OB=OD,OC=OC,∴△OBC≌△ODC.∴∠OBC=∠ODC,又BC是
S=Spab+圆-弓形AB=(2倍根号3)^2*4分之根号3+TT*2*2-120/360*TT*2*2+2倍根号3*根号3/2
证明:(1)∵CD是⊙O的切线,∴∠OCD=90°,即∠ACD+∠ACO=90°.①(2分)∵OC=OA,∴∠ACO=∠CAO,∴∠AOC=180°-2∠ACO,即∠AOC+2∠ACO=180°,两边
答案见图,理由为 在直角三角形中,如果直角边等于斜边的一半,则该直角边所对的角为30°
如右图,连接OC,∵AB是⊙O的直径,CD是⊙O的切线,∴CD⊥OC,∵∠B=25°,∴∠AOC=50°,∴∠D=40°.故答案为40°.
连接OD.OC平行于弦AD得COD=ODA==DAO=COB又OC=OC,OB=OD故三角形COD和COB全等,故CDO=CBO=90°.故为切线.
(1)证明:连接OD,在△OCD和△OCB中,CD=CBOC=OCOD=OB,∴△OCD≌△OBC(SSS),∴∠ODC=∠OBC,∵BC是⊙O的切线,∴OB⊥BC,即∠OBC=90°,∴∠ODC=9
(1)连接PO,OB,设PO交AB于D.∵PA,PB是⊙O的切线,∴∠PAO=∠PBO=90°,PA=PB,∠APO=∠BPO.∴AD=BD=3,PO⊥AB.∴PD=52−32=4.在Rt△PAD和R
证明:连接OA,OB,OP. 点B在圆心O上,且PA=PB;