已知MN分别为三角形abc的边ac bc 的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 10:55:27
(Ⅰ)在三角形AGM中,由正弦定理:sin∠AMG/AG=sin∠MAG/GM其中∠MAG=30°,∠AMG=180°-(30°+α),AG=2/3*AD=2/3*sin60°*AB=根号3/3,GM
cosC=[m^2+n^2-(根号下m^2+mn+n^2)^2]/2mn=-0.5,所以,最大角=120度
【不好意思,看到题目时太晚了】此题可用面积法证明,(此题中要用到的一个重要定理是:同高的两个三角形的面积比等于底边比)证:∵△AEC与△DEC同高∴S△AEC:S△DEC=AE:ED同理,S△AEB:
∵(m2-n2)2+(2mn)2=m4+n4-2m2n2+4m2n2=m4+n4+2m2n2=(m2+n2)2,∴a2+b2=c2,∴能成为直角三角形的三边长.
证明:过A作EF‖BC,与CH,BK的延长线交于E,F因为M,N分别是三角形ABC两边AB,AC的中点则由中位线定理MN‖BC‖EF,所以EP/PC=AN/NC=1,FP/PB=AM/MB=1所以EP
是的是直角三角形.a^2+b^2=m^2-2mn+n^2+4mn=m^2+n^2+2mnc^2=m^2+n^2+2mn所以a^2+b^2=c^2所以三角形是直角三角形
(m^2-n^2)^2+(2mn)^2=(m^2+n^2)^2,所以是直角三角形
取BD,CD,AD,连结AE,BG,AF,CG,(三角形ABD重心为M)所以AE,BG交于M,同理CG,AF交于N,取D,G中点H,连结EH,FH,EF因为E,H分别为BD,GD中点所以EH//BG所
M为AB中点故M(5,13/2)N为AC中点故N(11/2,11/2);D为BC中点故D(7/2,4)设AD直线解析式为y=kx+b则代入数字得AD解析式为y=8/7x同理MN解析式为y=33/2-2
取BC的中点E和CD的中点F,连结AE,AF,EF.∵M,N分别为△ABC和△ACD的重心,∴M在AE上,且有AM/AE=2/3;N在AF上,AN/AF=2/3.在△AEF中,由于MN分两边所成的比相
证明:连接CM、CN并延长,分别交AB、AD于P、Q两点,连接PQ、MN,由于M为ΔABC的重心,则CM=2MP,AP=PB,同理CN=2NQ,AQ=QD,∴CN/NQ=CM/MP∴MN//PQ∴MN
你好!m²-n²,2mn,m²+n²(m²+n²)²-(2mn)²=(m²+n²+2mn)(m
EF是三角形ABC中BC边的中位线,EF平行BC,EF=1/2BC,MN是三角形OBC中BC边的中位线,MN平行BC,MN=1/2BC,EF和MN平行且相等,四边形MNEF是平行四边形FM、EN平行且
延长AM、AN交BC于M1、N1AM⊥CE且CE平分角C,得AM=MM1同理AN=NN1MN//BC
设长度为√m^2+mn+n^2的边所对的角为角1则cos角1=[m^2+n^2-(√m^2+mn+n^2)^2]/2mn=-1/2所以三角形ABC的最大角=角1=120度.
是直角三角形因为(m2-n2)2+(2mn)2=m4-2m2n2+n4+4m2n2=m4+2m2n2+n4(m2+n2)2=m4+2m2n2+n4所以(m2-n2)2+(2mn)2=(m2+n2)2符
证明:设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为cosC=(a^2+b^2-c^2)/2abS=1/2*ab*sinC=1/2*ab*√(1-cos^2C)=1/2*ab*√[1-(
a=m^2+n^2b=m^2-n^2c=2mnb^+c^2=(m^2-n^2)^2+(2mn)^2=m^4-2m^2*n^2+n^4+4m^2*n^2=m^4+2m^2*n^2+n^4=(m^2+n^
ΔABC中:3²+4²=5²故ΔABC是直角三角形∵ΔABC∽ΔDEF∴ΔDEF也是直角三角形∵6²+8²=10²∴ΔDEF中的另外两边分别