已知l是曲线y=1 3x³ x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:27:22
已知l是曲线y=1 3x³ x
(2013•湖州二模)若直线l是曲线C:y=13x

由题意得,y′=3x2+1≥1,则直线l的斜率为1,此时x=0,故切点坐标为p(0,1),∴直线l的方程为:y-1=x,即x-y+1=0,则圆x2+y2=12的圆心到直线的距离d=12=22,故此直线

已知曲线C的方程为x=根号4-y^2,说明曲线C是怎样的曲线

x=√(4-y²)>0x²=4-y²x²+y²=2²曲线C是圆心在原点,半径为2,图像在y轴右边的半圆.

已知曲线C:f(x)=x+a/x(a>0),直线l:y=x,在曲线C上有一个动点P,过点P分别作直线l和y轴的垂线,垂足

设P(s,s+a/s),A(t,t), 则B(0,s+s/a)不妨设P在第一象限∵PA⊥l∴kPA=(s+a/s-t)/(s-t)=-1∴s+a/s-t=t-s∴t-s=a/(2s)由三角形

另询:∫L(x^2+y)dx+(2x-y^2)dy ,L是曲线 x^2+y^2=4x 的上半弧段

x^2+y^2=4x==>(x-2)^2+y^2=4若L是逆时针的话∫L(x^2+y)dx+(2x-y^2)dy=∫∫D[(2)-(1)]dxdy=∫∫Ddxdy=4π若L是顺时针==>∫L(x^2+

已知曲线C1:y=e^x与C2:y=-1/e^x,若直线l是C1,C2的公切线,试求l的方程

C1:y'=e^x,C2:y'=e^(-x),若存在相同直线,则e^(x1)=e^(-x2),又e^x是单调递增函数,所以x1=-x2,即x1、x2关于y轴对称.因为直线过x1,x2,即过点(x1,e

已知函数f(x)=x的立方+x-16.(1)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程;(2)如果曲线y

f(x)导数为f'(x)=3X^2+1;设切点为(m,n).则切线方程为:Y=(3m^2+1)X;点(m,n)在切线上有:n=(3m^2+1)m;-------------------1当然切点在曲线

已知与曲线C:x^2+y^2-2x-2y+1=0相切的直线l,与x轴、y轴交于A、高中数学:

(1)曲线C:(x-1)+(y-1)=1是以(1,1)为圆心的圆,直线l:y=-(a/b)x+a,可以写为:-(a/b)x-y+a=0;因为l与C相切,则C圆心到l的距离为1,由点到直线的距离方程知:

已知曲线y=1/x.(1)求曲线在x=1处的切线方程l;(2)求曲线过(1,0)的切线方程

f(x)=1/x求导f'(x)=-1/x^2f'(1)=-1f(1)=1所以y=-x+2设切点(x0,1/x0)则切线y-1/x0=(-1/x0^2)(x-x0)代入(1,0)x0=1/2所以y-2=

已知函数f(x)=lnx+a/x,且直线l与曲线y=f(x)相切求直线l的斜率k的取值范围

这题很诡异啊.f’(x)(导数就是斜率)=(x-a)/x^2,x>0.设t=1/x,则)(x-a)/x^2=t-at^2,对-at^2+t进行分析,原式为-a[t-(1/2a)]^2+1/4当t=1/

已知过点(1,1)的直线l与曲线y=x^3相切,求直线l的方程

y=x³y'=3x²①若(1,1)是切点那么斜率是k=3故直线l是y-1=3(x-1)即y=3x-2②若(1,1)不是切点那么设为(a,a³)(a≠1)那么斜率是k=3a

已知直线L过点p(3,-2),且与曲线段y=x^2-4x+6(1

直线L的方程为y=k(x-3)-2,联立y=x^2-4x+6得x^2-(k+4)x+3k+8=0令△=[-(k+4)]^2-4(3k+8)=k^2-4k-16=0,解得x1,2=2±2√5因2+2√5

已知曲线L:x的平方+y的平方-2x-4y+m=0

1、(x-1)²+(y-2)²=-m+1+4圆则r²=-m+1+4>0m

计算∫L(x^2-2y)dx+(x+y^2siny)dy,其中L是圆周x^2+y^2=2x的正向曲线,

∵L圆周x^2+y^2=2x的半径是1∴L圆周面积∫∫dxdy=π*1^2=π(S表示L圆周x^2+y^2=2x区域)故∫L(x^2-2y)dx+(x+y^2siny)dy=∫∫[α(x+y^2sin

已知曲线y=x

这就是一直线,再空间中把直线也叫曲线,因为再未知的情况下都叫曲线,即使结果是直线,就象我们在写东西的时候,不知道他是男的还是女的,就写成"他"一样

已知函数f(x)=e^x,直线l的方程为y=kx+b ⑴若直线l是曲线y=f(x)的切线

第一个画个图很容易理解的,具体计算过程如下设切点为(x'.y')则直线方程为y=e^x'(x-x')+e^x'即证F(x)=e^x-e^x'(x-x')-e^x',F(x)求导为e^x-e^x'当x=

设L:y=y(x)在点(x,y)处的切线的斜率是k=1+(2y+1)/x,且曲线L过点(1,0).试求曲线L的方程.

设L方程式Y=AX平方+bX+C因为过1,0所以a+b+c=0切线的斜率是k=1+(2y+1)/x能得到y’=1+(2y+1)/x由于y'=2ax+b所以1+(2y+1)/x=2ax+b所以b=1和(

已知曲线C1:y=X^2,C2:y=2x^2-3x+3,直线l:y=kx+m,l与C1和C2有四个交点,从左向右依次是A

(1)、曲线C1,C2开口向上,∵C2-C1=x^2-3x+3=(x-3/2)^2+3/4〉0,∴C1,C2没有交点且C2在C1的内部.(2)、四个交点A(x1,y1),B(x2,y2),C(x3,y

已知曲线方程f(x)=sinx+2ax(a∈R),若存在实数m,使直线l:x+y+m=0是曲线y=f(x)的切线,则a的

先求导f(x)'=cosx+2a由题意得f(x)'=-1分离常量a=(–1–cosx)/2……–1再问:额原来这么简单啊-_-||我想复杂了

已知曲线y=13x

设曲线y=13x3+43,与过点P(2,4)的切线相切于点A(x0,13x 30+43),则切线的斜率 k=y′|x=x0=x02,∴切线方程为y-(13x 30+43)

已知l:x-y+b=0曲线C:y=根号(4-x^2)

曲线C:y=√(4-x²),变形得y²+x²=4∵y>0,∴曲线C是圆心在原点半径为2的上半圆而y=x+b是斜率为1的直线,∴作图可知该直线与上半圆相切,此时b=2√2或